Measurement and Moderating Effect of Online Customer Purchase Clumpy
LU Meili1, GAO Yujia1, YE Zuoliang2
1.School of Business Administration, Shanxi University of Finance and Economics,Taiyuan 030006, China; 2.School of International Business, Southwestern University of Finance and Economics, Chengdu 611130, China
Abstract:With the in-depth analysis of space and time complexity of human behavior, a large number of empirical studies have found that human behavior is no longer considered as Poisson distribution, but shows a "clumpy" phenomenon that occurs frequently after a long silence. This paper proposes an improved method combining the characteristics of current online purchase behavior. By measuring and the purchase clumpy of customers on the YHD and the JD platform, this paper gives empirical research. The results show that the customer's recent purchase time R, the purchase frequency F and the customer's active odds are positively correlated; Clumpy has a moderating effect on the recent purchase time R, and the recent purchase time R is more related to the customer's active odds to the no clumpy customers.
[1]Schmittlein D C, Morrison D G, Colombo R. Counting your customers: Who are they and what will they do next? [J]. Management Science,1987,33(1):1-24. [2]Fader P S, Hardie B G S, Shang J. Customer-base analysis in a discrete-time noncontractual setting[J]. Marketing Science,2010,29(6):1086-1108. [3]Oliveira-Castro J M, Ferreira D C S, Foxall G R, et al. Dynamics of repeat buying for packaged food products[J]. Journal of Marketing Management, 2005, 21(21):37-61. [4]Abe M. "Counting your customers" one by one: A hierarchical bayes extension to the Pareto/NBD model[J]. Marketing Science, 2009, 28(3):541-553. [5]Jerath K, Fader P S, Hardie B G S. New perspectives on customer “death” using a generalization of the Pareto/NBD model[J]. Marketing Science, 2011, 30(5):866-880. [6]Buschken J, Ma S. When are your customers active and is their buying regular or random? An erlang mixture state-switching model for customer scoring[J]. Ssrn Electronic Journal, 2012. [7]Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. [8]Barabási A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039):207-211. [9]周涛,韩筱璞,闫小勇,等. 人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4):481-540. Zhou Tao, Han Xiaopu, Yan Xiaoyong, et al. Statistical mechanics on temporal and spatial activities of human[J]. Journal of University of Electronic Science and Technology of China, 2013, 4(4):481-540. [10] Liu-Thompkins Y, Malthouse E C. A primer on using behavioral data for testing theories in advertising research[J]. Journal of Advertising,2017, 46(1):213-225. [11] Wang J, Gao K, Li G. Empirical analysis of customer behaviors in Chinese e-commerce[J]. Journal of Networks, 2010, 5(10):1177-1184. [12] 樊超. 从图书借阅看人类群体和个体行为的动力学机制[D]. 上海理工大学, 2010:19-20. Fan Chao. Study on dynamic mechanism of human behaviors base on library loans fromcollective and individual perspectives[D].University of Shanghai for Science and Technology, 2010:19-20. [13] 叶作亮,王雪乔,宝智红,等. C2C环境中顾客重复购买行为的实证与建模[J]. 管理科学学报, 2011, 14(12):71-78. Ye Zuolinag, Wang Xueqiao, Bao Zhihong, et al. Modeling and empirical research of repeat purchase behavior in C2C ecommerce[J]. Journal of Management Sciences on China, 2011, 14(12):71-78. [14] Zhang Y, Bradlow E T, Small D S. New measures of clumpiness for incidence data[J]. Journal of Applied Statistics, 2013, 40(40):2533-2548. [15] Zhang Y, Bradlow E T, Small D S. Predicting customer value using clumpiness: From RFM to RFMC[J]. Marketing Science, 2015, 34(2):21-46. [16] Gilovich T, Vallone R, Tversky A. The hot hand in basketball: On the misperception of random sequences[J]. Cognitive Psychology, 1985, 17(3):295-314. [17] Eckmann J P, Moses E, Sergi D, et al. Entropy of dialogues creates coherent structures in e-mail traffic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40):14333-7. [18] Goh K I,Barabasi A L. Burstiness and memory in complex systems[J]. Europhysics Letters, 2008, 81(4): 48002. [19] 周涛. 在线电影点播中的人类动力学模式[J]. 复杂系统与复杂性科学, 2008, 5(1):1-5. Zhou Tao. Human activity pattern on on-line movie watching[J].Complex System and Complexity Science, 2008, 5(1):1-5. [20] Kumar V, Srinivasan K, Rao V R, et al. Commentaries and reply on “predicting customer value using clumpiness: From RFM to RFMC” by Yao Zhang, Eric T. Bradlow, and Dylan S. Small[J]. Marketing Science, 2015, 34(2):209-217. [21] Tian Y, Ye Z L, Yan Y F, et al. A practical model to predict the repeat purchasing pattern of consumers in the C2C e-commerce[J]. Electronic Commerce Research, 2015, 15(4):571-583. [22] 吴晓飞. 在线零售市场结构及其演化机制研究[D]. 成都:西南财经大学, 2016:48-56. Wu Xiaofei. The structure and evolution mechanism research of online retail market[D]. Chengdu: Southwestern University of Finance and Economics, 2016:48-56. [23] 卢美丽,叶作亮,曹翠珍. 在线零售市场顾客重复购买行为建模与实证研究[J]. 软科学, 2019 (1):134-139. Lu Meili, Ye Zuoliang, Cao Cuizhen. Modeling and empirical research on customer repeat purchasing behavior in online retail market[J]. Soft Science, 2019 (1):134-139. [24] 吴明隆. 问卷统计分析实务-SPSS操作与应用[M].重庆:重庆出版社,2009. [25] 温忠麟,侯杰泰,张雷. 调节效应与中介效应的比较和应用[J]. 心理学报, 2005, 37(2):268-274. Wen Zhonglin, Hou Jietai, Zhang Lei. A comparison of moderator and mediator and their applications[J]. Acta Psychologica Sinica, 2005, 37(2):268-274.