Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (1): 1-7    DOI: 10.13306/j.1672-3813.2021.01.001
  本期目录 | 过刊浏览 | 高级检索 |
基于多种社交关系的概率矩阵分解推荐算法
公翠娟, 宾晟, 孙更新
青岛大学数据科学与软件工程学院,山东 青岛 266071
Matrix Decomposition Recommendation Algorithm Based on Multi-Relationship Social Network
GONG Cuijuan, BIN Sheng, SUN Gengxin
School of data science and software engineering, Qingdao University, Qingdao 266071, China
全文: PDF(1161 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着社交网络的发展,社会化推荐算法得到普遍应用,现有的推荐算法往往只是将一种社交关系引入到推荐系统,但在现实社交网络中用户之间往往存在多种社交关系。基于多子网复合复杂网络模型,利用共享用户特征矩阵,提出了基于多关系社交网络的矩阵分解推荐算法。通过在Epinions数据集上的实验结果分析,准确率评价指标MAE、RMSE和NMAE分别提高了34%、27%和7%,由此可以证明,多关系社交网络的矩阵分解推荐算法能有效提高推荐准确率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
公翠娟
宾晟
孙更新
关键词 多关系社交网络矩阵分解推荐算法多子网复合复杂网络    
Abstract:With the development of social networks, social recommendation algorithms are widely used. Existing recommendation algorithms often only introduce one kind of social relationship into the recommendation system, but in reality there are multiple social relationships between users. Based on the multi-subnet composite complex network model and the shared user characteristic matrix, this paper proposes a matrix decomposition recommendation algorithm based on the multi-relational social network. Through the analysis of experimental results on the Epinions data set, the accuracy evaluation indexes MAE, RMSE and NMAE increased by 34%, 27% and 7% respectively. This proves that the matrix factorization recommendation algorithm of multi-relational social networks can effectively improve the accuracy of recommendation.
Key wordsmulti-relationship social network    matrix decomposition    recommendation algorithm    multi-subnet complex network
收稿日期: 2020-06-10      出版日期: 2020-12-28
ZTFLH:  C912  
  N941  
基金资助:山东省自然基金面上项目(ZR2017MG011);教育部人文社会科学研究青年项目(15YJC860001);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978),男,山东青岛人,博士,副教授,主要研究方向为复杂网络中传播动力学及相关传播模型。   
作者简介: 公翠娟(1994),女,山东菏泽人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
GONG Cuijuan, BIN Sheng, SUN Gengxin. Matrix Decomposition Recommendation Algorithm Based on Multi-Relationship Social Network. Complex Systems and Complexity Science, 2021, 18(1): 1-7.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.01.001      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I1/1
[1] 张时俊, 王永恒. 基于矩阵分解的个性化推荐系统研究[J]. 中文信息学报, 2017,31(3):134135.Zhang Shijun,Wang Yongheng. Research on personalized recommendation system based on matrix factorization[J]. Journal of Chinese Information Processing. 2017,31(3):134135.
[2] 刘华锋, 景丽萍, 于剑. 融合社交信息的矩阵分解推荐方法研究综述[J]. 软件学报, 2018,29(2):340341.Liu Huafeng,Jing Liping,Yu Jian. Review of matrix factorization recommendation methods based on social information[J]. Journal of Software, 2018,29(2):340341.
[3] Tian G, Jing L P. Recommending scientific articles using bi-relational graph-based iterative RWR[C]//Proceedings of the 7th ACM Conference on Recommender Systems.Hong Kong,China,2013:399402.
[4] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8): 3037.
[5] Do L, Lauw H W. Modeling contextual agreement in preferences[C]// Proceedings of the 23rd International Conference on World Wide Web. ACM, New York,USA, 2014:315317.
[6] Lu Z, Dou Z, Lian J, et al. Content-based collaborative filtering for news topic recommendation[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, Texas,USA, 2015:217223.
[7] 邓爱林, 左子叶, 朱扬勇. 基于项目聚类的协同过滤推荐算法[J]. 小型微型计算机系统, 2004,25(9):16651666.Deng Ailin,Zuo Ziye,Zhu Yangyong. Collaborative filtering recommendation algorithm based on item clustering[J]. Small Microcomputer System,2004,25(9):16651666.
[8] Yu H, Li J H. Collaborative filtering recommendation algo rithm using social and tag information[J]. Journal of Chinese Computer Systems, 2013,34(11): 24672471.
[9] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):3037.
[10] Kautz H, Selman B, Shah M. Referral web: combining social networks and collaborative filtering[J]. Communications of the ACM,1997,40(3): 6365.
[11] Yang B, Lei Y, Liu J, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):16331647.
[12] 李镇东,罗琦,施力力. 基于增加相似度系数的加权二部图推荐算法[J]. 计算机科学,2016,43(7):259264.Li Zhendong, Luo Qi, Shi Lili. Weighted bipartite graph recommendation algorithm based on increasing similarity coefficient[J]. Computer Science, 2016,43(7):259264.
[13] 曹玉琳, 李文立, 郑东霞. 融合社会标签的联合概率矩阵分解推荐算法[J]. 信息与控制, 2017,46(4):401406.Cao Yulin, Li Wenli, Zheng Dongxia. Joint probability matrix decomposition recommendation algorithm with social tags [J]. Information and Control, 2017,46(4):401406.
[14] 王瑞琴, 潘俊, 冯建军. 基于信任计算和矩阵分解的推荐算法[J]. 模式识别与人工智能, 2018, 31(9):1626.Wang Ruiqin, Pan Jun, Feng Jianjun. Recommendation algorithm based on trust calculation and matrix factorization [J]. Pattern Recognition and Artificial Intelligence, 2018, 31(9):1626.
[15] Ma H, Zhou T C, Lyu M R, et al. Improving recommender systems by incorporating social contextual information[J]. ACM Transactions on Information Systems, 2011, 29(2):123.
[16] 隋毅. 多子网复合复杂网络模型及其相关性质的研究[D]. 青岛:青岛大学, 2012,2014.Sui Yi. Research on multi-subnet composite complex network model and its related properties [D]. Qingdao: Qingdao University, 2012.
[17] Salakhutdinov R, Mnih A. Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. New York,USA, 2007:12571264.
[18] 郭宁宁, 王宝亮, 侯永宏, 等. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018,12(2):210213.Guo Ningning, Wang Baoliang, Hou Yonghong,et al. Collaborative filtering recommendation algorithm based on social network features [J]. Journal of Frontiers of Computer Science and Technology, 2018,12(2):210213.
[19] Mao Y Y, Liu J X, Hu R, et al. Sigmoid function-based web service collaborative filtering recommendation algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 314322.
[1] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[2] 郭强, 岳强, 李仁德, 刘建国. 入用户情感的高阶奇异值分解推荐算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 1-9.
[3] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed