Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (1): 12-19    DOI: 10.13306/j.1672-3813.2022.01.002
  本期目录 | 过刊浏览 | 高级检索 |
基于有效距离的复杂网络节点影响力度量方法
马媛媛, 韩华
武汉理工大学理学院,武汉 430070
An Effective Distance-based Measure for Node's Influence in Complex Network
MA Yuanyuan, HAN Hua
Department of Science, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(2289 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 现有的节点影响力度量方法侧重于考虑邻居节点的信息,忽略了节点间拓扑结构的差异。针对此问题,提出一种基于网络结构特征的节点影响力度量算法。首先,引入隐藏于网络背后的有效距离,从两个角度分别度量节点的重要性。其次,为克服角度融合时主观因素的影响,借助多属性决策理论中的VIKOR方法计算复杂网络中节点的影响力,并进行排序。在6个真实网络上,通过SIR模型进行数值仿真实验,与其他中心性算法进行排名区分度、准确性比较。实验结果表明,所提方法不仅可以得到更准确的排序结果,而且有效减少了相同排序节点的出现频率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马媛媛
韩华
关键词 复杂网络节点重要性有效距离E-VIKOR    
Abstract:The measurement method of node influence based on network structure features focuses on considering the information of neighbor nodes, ignoring the difference in topology structure between nodes. To solve this problem, this paper proposes an algorithm for measuring node influence based on network structure. First, the effective distance hidden behind the network is introduced, and the importance of nodes is measured from two perspectives. Secondly, in order to overcome the influence of subjective factors in angle fusion, the influence of nodes in the complex network is calculated by using the VIKOR method in the multi-attribute decision making theory, and is sorted. In six real networks, numerical simulation experiments are carried out by using SIR model, and the ranking differentiation and accuracy are compared with other centrality algorithms. Experimental results show that the proposed method can not only obtain more accurate sorting results, but also effectively reduce the occurrence frequency of the same sorting nodes.
Key wordscomplex networks    node importance    effective distance    E-VIKOR
收稿日期: 2020-11-19      出版日期: 2022-02-21
ZTFLH:  TP39  
  N94  
基金资助:国家自然科学基金青年科学基金(111701435);国家自然科学基金面上项目(A010803)
通讯作者: 韩华(1975-),女,山东烟台人,博士,教授,主要研究方向为复杂性分析与评价、经济控制与决策。   
作者简介: 马媛媛(1996-),女,山西长治人,硕士研究生,主要研究方向为复杂网络动力学。
引用本文:   
马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
MA Yuanyuan, HAN Hua. An Effective Distance-based Measure for Node's Influence in Complex Network. Complex Systems and Complexity Science, 2022, 19(1): 12-19.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.01.002      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I1/12
[1] BARABASI A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[2] JUN T, PIERA M A, Ruiz S. A causal model to explore the ACAS induced collisions[J]. Aircraft Engineering and Aerpospace Technology, 2014, 228(10): 1735-1748.
[3] 汪小帆, 李翔, 陈关荣, 等. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 2006.
[4] LI Y S, MA D Z, ZHANG H G, et al. Critical nodes identification of power systems based on controllability of complex networks[J]. Applied Surface Science, 2015, 5(3): 622-636.
[5] MILO R, SHENORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
[6] ALBERT R, JEONG H, BARABASI A L. Diameter of the world-wide web[J]. Nature, 1999, 401: 130-131.
[7] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
[8] SABIDUSSI G. The centrality index of a graph[J]. Psychometrika, 1966, 31(4): 581-603.
[9] BONACICH P, LLOYD P. Eigenvector-like measures of centrality for asymmetric relations[J]. Social Networks, 2001, 23(3): 191-20.
[10] RADICCHI F, FORTUNATO S, MARKINES B, et al. Diffusion of scientific credits and the ranking of scientists[J]. Physical Review E, 2009, 80(5): 056103.
[11] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex net-works[J]. Nature Physics, 2010, 6(11): 888-893.
[12] 胡钢, 徐翔, 高浩, 等. 基于邻接信息熵的网络节点重要性识别算法[J]. 系统工程理论与实践, 2020, 40(3): 714-725.
HU G, XU X, GAO H, et al. Node importance recognition algorithm based on adjacency information entropy in networks[J]. Systems Engineering-Theory & Practice, 2020, 40(3): 714-725.
[13] 王凯莉, 邬春学, 艾均. 基于多阶邻居壳数的向量中心性度量方法[J]. 物理学报, 2019, 68(19): 196402.
WANG K L, WU C X, AI J, et al. Complex network centrality method based on multi-order K-shell vector[J]. Acta Physica Sinica, 2019, 68(19): 235-245.
[14] HU J, DU Y, MO H, et al. A modified weighted TOPSIS to identify influential nodes in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 444: 73-85.
[15] FEI L, MO H, DENG Y. A new method to identify influential nodes based on combining of existing centrality measures[J]. Modern Physics Letters B, 2017, 31(26): 1750243.
[16] MA Q, MA J. Identifying and ranking influential spreaders in complex networks with consideration of spreading probability[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 465: 312-330.
[17] BIAN T, HU J t, DENG Y. Identifying influential nodes in complex networks based on AHP[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479(4): 1777-1787.
[18] 郭强, 殷冉冉, 刘建国. 基于TOPSIS的时序网络节点重要性研究[J]. 电子科技大学学报, 2019, 48(2): 296-300.
GUO Q, YIN R R, LIU J G. Node importance identification for temporal networks via the TOPSIS method[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 296-300.
[19] 韩忠明, 吴杨, 谭旭升, 等. 面向结构洞的复杂网络关键节点排序[J]. 物理学报, 2015, 64(5): 058902.
HAN Z M, WU Y, TAN X S, et al. Ranking key nodes in complex networks by considering structural holes[J]. Acta Physica Sinica, 2015, 64(5): 058902.
[20] ZHAO J, WANG Y, DENG Y. Identifying influential nodes in complex networks from global perspective[J]. Chaos, Solitons & Fractals, 2020, 133: 109637.
[21] BROCKMANN D, HELBING D. The hidden geometry of complex, network-driven contagion phenomena[J]. science, 2013, 342(6164): 1337-1342.
[22] HU J, ZHANG X, YANG Y, et al. New doctors ranking system based on VIKOR method[J]. International Transactions in Operational Research, 2020, 27(2): 1236-1261.
[23] NEWMAN M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.
[24] YANG Y, WANG X, CHEN Y, et al. A novel centrality of influential nodes identification in complex networks[J]. IEEE Access, 2020, 8: 58742-58751.
[25] KENDALL M G. The treatment of ties in ranking problems[J]. Biometrika, 1945, 33(3): 239-251.
[26] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4): 452-473.
[27] LUSSEAU D, SCHEEIDER K, BOISSEAU O J, et al. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405.
[28] GLEISER P M, DANON L. Community structure in jazz[J]. Advances in Complex Systems, 2003, 6(4): 565-573.
[29] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
[30] ZENG A, LIU W. Enhancing network robustness against malicious attacks[J]. Physical Review E, 2012, 85(6): 066130.
[31] GUIMERA R, DANON L, DIAZ-gUILERA A, et al. Self-similar community structure in a network of human interactions[J]. Physical Review E, 2003, 68(6): 065103.
[1] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[2] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[3] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[4] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[5] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[6] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[7] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[8] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[9] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[10] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[11] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[12] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[13] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[14] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[15] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed