Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (1): 27-33    DOI: 10.13306/j.1672-3813.2022.01.004
  本期目录 | 过刊浏览 | 高级检索 |
相继投影同步及其在保密通信中的应用
祝晓静1,3, 李科赞1, 丁勇2
1.桂林电子科技大学数学与计算科学学院,广西 桂林 541004;
2.鹏城实验室网络空间安全研究中心,深圳 518055;
3.江苏省无锡交通高等职业技术学校, 江苏 无锡 214000
Successive Projective Synchronization and Its Application in Secure Communication
ZHU Xiaojing1,3, LI Kezan1, DING Yong2
1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;
2. Cyberspace Security Research Center, Pengcheng Laboratory, Shenzhen 518055, China;
3. Wuxi Institute of Communications Technology, Wuxi 214000, China
全文: PDF(1714 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于李亚普诺夫稳定性理论分析,在适当的条件下,通过自适应牵制控制方法实现驱动响应网络的相继投影同步。与现有的结果相比,此同步方法更加通用和方便。同时,还设计了一种基于混沌掩盖技术的保密通信系统,可实现一对多实时发送信息,具有解密速度快和安全性高的特点。最后,通过数值仿真验证了理论结果的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祝晓静
李科赞
丁勇
关键词 相继投影同步自适应控制牵制控制保密通信    
Abstract:Based on the Lyapunov stability theory, the theoretical analysis shows that under appropriate conditions, the drive-response network can achieve global synchronization through adaptive pinning control method. This method is more general and convenient. At the same time, this paper designs a secure communication system based on chaotic masking technology, which can realize one-to-many real-time transmission of information, and has the characteristics of fast decryption speed and high security. Finally, the correctness of the theoretical results is verified by numerical simulation.
Key wordssuccessive projective synchronization    adaptive control    pinning control    secret communication
收稿日期: 2021-01-06      出版日期: 2022-02-21
ZTFLH:  O231.2  
基金资助:国家自然科学基金(62166010);鹏城实验室网络空间安全研究中心网络仿真项目(PCL2018KP004)
通讯作者: 丁勇(1975-),男,四川重庆人,博士,教授,主要研究方向为密码学与信息安全。   
作者简介: 祝晓静(1990-),女,河南南阳人,硕士,主要研究方向为网络动力学。
引用本文:   
祝晓静, 李科赞, 丁勇. 相继投影同步及其在保密通信中的应用[J]. 复杂系统与复杂性科学, 2022, 19(1): 27-33.
ZHU Xiaojing, LI Kezan, DING Yong. Successive Projective Synchronization and Its Application in Secure Communication. Complex Systems and Complexity Science, 2022, 19(1): 27-33.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.01.004      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I1/27
[1] GU Y Q, HUANG W Q, CHEN T L. Chaotic dynamics in weight space of neural networks[J]. Communications in Theoretical Physics, 1999, 32(2): 247-252.
[2] XU D L, LI Z, BISHOP S R. Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems[J]. Chaos, 2001, 11(3): 439-442.
[3] ARIANOS S, BOMPARD E, CARBONE A, et al. Power grid vulnerability: a complex network approach[J]. Chaos, 2009, 19(1): 013119.
[4] MUKHERJEE J, RAMAMURTHY B. Communication technologies and architectures for space network and interplanetary internet[J]. IEEE Communications Surveys and Tutorials, 2013, 15(2): 881-897.
[5] CHEE C Y, XU D. Chaos-based m-ary digital communication technique using controlled projective synchronisation[J]. IEE Proceedings-Circuits Devices and Systems, 2006, 153(4): 357-360.
[6] DUA H Y, ZENG Q S, WANG C H, et al. Function projective synchronization in coupled chaotic systems[J]. Nonlinear Analysis: Real World Applications, 2010,11(2): 705-712.
[7] 陆君安. 复杂网络的同步和拓扑结构的识别[J]. 复杂系统与复杂性科学, 2010, 7(2): 19-23.
[8] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012.
[9] 陈天平, 卢文联. 复杂网络协调性理论[M]. 北京: 高等教育出版社, 2013.
[10] 张新建, 韦爱举, 李科赞. 具有通信时延的动态网络的相继滞后同步[J]. 中国物理B, 2016, 25(3): 038901.
ZHANG X J, WEI A J, LI K Z. Successive lag synchronization on dynamical networks with communication delay[J]. Chinese Physics B, 2016, 25(3): 038901.
[11] CHEN J, JIAO L, WU J, et al. Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 3045-3058.
[12] HSIAO F H. Fuzzy control of dithered chaotic systems via neural-network-based approach[J]. Journal of the Franklin Institute, 2010, 347(7): 1114-1136.
[13] HU G, XIAO J H, GAO J, et al. Analytic study of spatiotemporal chaos control by applying local injections[J]. Physical Review E, 2000, 62(3): 3043-3047.
[14] PAREKH N, PARTHASARATHY S, SINHA S. Global and local control of spatiotemporal chaos in coupled map lattices[J]. Physical Review Letters, 1998, 81(7): 1401-1404.
[15] MAHMOUD G M, ALY S A, FARGHALY A A. On chaos synchronization of a complex two coupled dynamos system[J]. Chaos Solitons and Fractals, 2007, 33(1): 178-187.
[16] 陈关荣. 控制非线性动力系统的混沌现象[J]. 控制理论与应用,1997, 1997(1): 1-6.
CHEN G R. Controlling chaos in nonlinear dynamical systems[J]. Control Theory and Applications, 1997, 1997 (1): 1-6.
[17] PESENSON M Z, PESENSON I Z. Adaptive multiresolution analysis based on synchronization[J]. Physical Review E, 2011, 84(4): 045202.
[18] ZHANG Y X, LI K Z. Successive lag synchronization on nonlinear dynamical networks via aperiodically intermittent control[J]. Nonlinear Dynamics, 2019, 95(4): 3075-3089.
[19] TONG D B, ZHOU W N, ZHOU X H, et al. Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 29(1/3): 359-371.
[20] HU M F, YANG Y Q, XU Z Y, et al. Projective synchronization in drive-response dynamical networks[J]. Physica A, 2007, 381(1): 457-466.
[21] ZHENG S, BI Q S, CAI G L. Adaptive projective synchronization in complex networks with time-varying coupling delay[J]. Physics Letters A, 2009, 373(17): 1553-1559.
[22] XU D L, LI Z G. Controlled projective synchronization in nonpartially-linear chaotic systems[J]. International Journal of Bifurcation and Chaos, 2002, 12(6): 1395-1402.
[23] CAI N, JING Y W, ZHANG S Y. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(6): 1613-1620.
[24] CHEN Y, LI X. Function projective synchronization between two identical chaotic systems[J]. International Journal of Modern Physics C, 2007, 18(5): 883-888.
[25] SUN M, ZENG C Y, TIAN L X. Projective synchronization in drive-response dynamical networks of partially linear systems with time-varying coupling delay[J]. Physics Letters A, 2008, 372(46): 6904-6908.
[26] HU M F, XU Z Y. Adaptive feedback controller for projective synchronization[J]. Nonlinear Analysis: Real World Applications, 2008, 9(3): 1253-1260.
[27] 祝晓静, 李科赞, 丁勇. 复杂动力学网络上的基于线性控制下的相继投影同步,桂林电子科技大学学报, 2021, 41(6):510-515.
ZHU X J, LI K Z, DING Y. Successive projective synchronization based on linear control over complex dynamical networks[J]. Journal of Guilin University of Electronic Technology, 2021, 41(6):510-515.
[28] LI D M, LU J, WU X Q, et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2): 844-853.
[29] HORN R A, JOHNSON C R. Matrix analysis, Second Edition[M]. New York: Cambridge University Press, 2013.
[1] 方荣东, 王银河, 汤晓. 一类具有异维节点的复杂动态网络外同步控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed