Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (1): 52-59    DOI: 10.13306/j.1672-3813.2022.01.007
  本期目录 | 过刊浏览 | 高级检索 |
疫情背景下全球股市网络的抗毁性及预警研究
赵军产1, 王少薇1, 陆君安2, 王敬童1
1.湖南工商大学 a.理学院,b.统计学习与智能计算湖南省重点实验室,长沙 410205;
2.武汉大学数学与统计学院,武汉 430072
Research on the Invulnerability and Early Warning of Global Stock Market Networks Under the Background of Epidemic
ZHAO Junchan1, WANG Shaowei1, LU Jun'an2, WANG Jingtong1
1. a. School of Science; b. Human Key Laboratory of Human Province for Statistics Learning and Intelligent Computation, Hunan University of Business and Technology, Changsha 410205, China;
2. The School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
全文: PDF(1951 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究新冠肺炎疫情对全球经济造成的影响,采用最小生成树法和阈值法相结合的方式构建了疫情爆发前、中国国内疫情爆发和全球疫情蔓延3个时期的全球重要股指的关联网络。通过比较3个阶段的网络拓扑结构、抗毁性和节点重要性,发现疫情使得全球股市之间的联动效应显著增强;全球股票关联网络具有明显的小世界特性,节点的介数服从幂律分布;网络攻击仿真实验中,蓄意攻击比随机攻击更具破坏性,且3个时期的全球股票网络的稳健性依次增强;疫情前后股票的重要性排序发生了明显的变化,中国内地和中国香港在此次疫情中率先遭受了巨大的冲击,但随后很快调整过来,欧美地区则在全球疫情加重后才受到波及。此外,将累积和控制图应用于股价的预警也得到了很好的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵军产
王少薇
陆君安
王敬童
关键词 复杂网络新冠肺炎疫情网络瓦解抗毁性CUSUM算法    
Abstract:The Covid-19 epidemic has a significant impact on the global economy. In this paper, the minimum spanning tree method and threshold method are combined to build a correlation network for three periods before the outbreak, domestic outbreak and global spread of the epidemic. By comparing the network topology, survivability and node importance in the three stages, it is found that the epidemic has significantly enhanced the linkage effect between global stock markets. The global stock correlation network has obvious small-world characteristics, and the betweenness of nodes obey power law distribution. In the simulation experiment of network attack, deliberate attack is more destructive than random attack, and the robustness of global stock network in three periods is enhanced successively. The importance of stocks changed significantly before and after the epidemic. Chinese mainland and Hong Kong were the first to suffer a huge impact in the epidemic, but they quickly adjusted, while Europe and The United States were only affected after the global epidemic worsened. In addition, the application of cumulative sum control chart (CUSUM) to the early warning of stock prices has also achieved good results.
Key wordscomplex network    Covid-19    network collapse    invulnerability    CUSUM algorithm
收稿日期: 2021-01-13      出版日期: 2022-02-21
ZTFLH:  N949  
基金资助:国家社会科学基金(18BTJ025)
通讯作者: 王敬童(1973-),男,湖南双峰人,硕士,副教授,主要研究方向为金融市场复杂性。   
作者简介: 赵军产(1982-),男,河南漯河人,博士,教授,主要研究方向为复杂网络、金融风险传播。
引用本文:   
赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
ZHAO Junchan, WANG Shaowei, LU Jun'an, WANG Jingtong. Research on the Invulnerability and Early Warning of Global Stock Market Networks Under the Background of Epidemic. Complex Systems and Complexity Science, 2022, 19(1): 52-59.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.01.007      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I1/52
[1] MANTEGNA R N. Hierarchical structure in financial markets[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 1999, 11(1):193-197.
[2] IORI G, MASI G D, PRECUP O V, et al. A network analysis of the Italian overnight money market[J]. Journal of Economic Dynamics & Control, 2008, 32(1):259-278.
[3] LI P, WANG B H. An approach to Hang Deng Index in Dong Kong stock market based on network topological statistics[J]. Chinese Science Bulletin,2006,51(5):624-629.
[4] NOBI A, MAENG S E, HA G G, et al. Effects of global financial crisis on network structure in a local stock market[J]. Physic A: Statistical Mechanics and Its Applications,2014,407:135-143.
[5] 黄玮强,庄新田,姚爽.中国股票关联网络拓扑性质与聚类结构分析[J].管理科学,2008,21(3):94-103.
HUANG W Q,ZHUANG X T,YAO S.Analysis of topological properties and clustering structure of chinese stock association network[J].Management Science,2008,21(3):94-103.
[6] 张来军,杨治辉,路飞飞.基于复杂网络理论的股票指标关联性实证分析[J].中国管理科学,2014,22(12):85-92.
ZHANG L J,YANG Z H, LU F F.An empirical analysis of the relevance of stock indexes based on complex network theory[J].China Management Science,2014,22(12):85-92.
[7] NEWPORT K T,VARSHNEY P K.Design of survivable communications networks under performance constraints[J]. IEEE Transactions on Reliability, 1991, 40(4):433-440.
[8] HEIBERGER R H. Stock network stability in times of crisis[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 393:376-381.
[9] 周方召,贾少卿.经济政策不确定性、投资者情绪与中国股市波动[J].金融监管研究,2019(8):101-114.
ZHOU F Z, JIA S Q. Economic policy uncertainty,investor sentiment and China's stock market volatility[J].Financial Supervision Research,2019(8):101-114.
[10] ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):378-382.
[11] HOLME P, KIM B J, YOON C N, et al. Attack vulnerability of complex networks[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2002, 65(5):056109.
[12] BELLINGERI M, CASSI D, VINCENZI S. Efficiency of attack strategies on complex model and real-world networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 414(10):174-180.
[13] WANG H,HUANG J Y,XU X M,et al.Damage attack on complex networks[J]. Physic A: Statistical Mechanics and its Applications,2014,408:134-148.
[14] CHEN Y, PAUL G,HAVLIN S,et al. Finding a better immunization strategy[J]. Physical Review Letters, 2008, 101(5):058701.
[15] SCHNEIDER C M, MIHALJEV T, HAVLIN S,et al. Suppressing epidemics with a limited amount of immunization units[J]. Physical Review E: Statistical,2011,84(6):061911.
[16] 邓烨. 复杂网络最优攻击策略研究[D].长沙:国防科学技术大学,2015.
DENG Y. Research on optimal attack strategies for complex networks[D].Changsha: National University of Defense Technology,2015.
[17] 王梓行,姜大立,漆磊,等.基于冗余度的复杂网络抗毁性及节点重要度评估模型[J].复杂系统与复杂性科学,2020,17(3):78-85.
WANG Z X, JIANG D L, QI L,et al. Evaluation model of invulnerability and node importance of complex networks based on redundancy[J].Complex Systems and Complexity Science,2020,17(3):78-85.
[18] 成琴. 关于CUSUM控制图的一些应用研究[D].成都:四川师范大学,2017.
CHENG Q. Some applied research on CUSUM control chart[D]. Chengdu: Sichuan Normal University,2017.
[19] KARAMI M,GHALANDARI M,POOROLAJAL J,et al. Early detection of meningitis outbreaks: application of limited-baseline data[J]. Iranian Journal of Public Health,2017,46(101):366-1373.
[20] 牛卢璐,贾宏杰.一种适用于非侵入式负荷监测的暂态事件检测算法[J].电力系统自动化,2011,35(9):30-35.
NIU L L, JIA H J. A transient event detection algorithm suitable for non-intrusive load monitoring[J].Automation of Electric Power Systems,2011,35(9):30-35.
[1] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[2] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[3] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[4] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[5] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[6] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[7] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[8] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[9] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[10] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[11] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[12] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[13] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[14] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[15] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed