Identifying High Reputation Users Based on Skyline Query
LIU Xiaolu1a,b, JIA Shuwei2, WANG Jianmin3
1.a.School of Economics, b.Fanhai International School of Finance, Fudan University, Shanghai 200433, China; 2.College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China; 3.School of Economics and Management, Anhui University of Science and Technology , Huainan 232001, China
Abstract:User reputation is of great significance for healthy development of Internet finance and E-commerce, and it is an important research hotspot in online user's behavior analysis. Many reputation measurement methods have proposed by scholars for online rating systems. However, different reputation measurement methods are designed form different perspectives. In order to have a general understanding of user's reputation, Skyline query is introduced to identify high-reputation users in this paper.By classifying the current methods for measuring user's reputation based on clustering methods, we select a representative algorithm in each class and the user's reputation by the selected algorithms are calculated with Skyline Query. The users in the found Skyline set (not being dominated by other users) are the high-reputation users. We also analyze the rules of high-reputation users within different time periods.This paper carries out applied research on reputation from a qualitative point of view by combining multiple reputation measurement methods, broadening the breadth of the research on user reputation.
刘晓露, 贾书伟, 王建民. 基于Skyline Query的高声誉用户识别方法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 62-70.
LIU Xiaolu, JIA Shuwei, WANG Jianmin. Identifying High Reputation Users Based on Skyline Query. Complex Systems and Complexity Science, 2018, 15(2): 62-70.
[1]Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]. Proc Natl Acad Sci USA, 2010, 107(10): 4511-4515. [2]Muchnik L, Aral S, Taylor S J. Social influence bias: a randomized experiment[J]. Science, 2013, 341(6146): 647-651. [3]Zhang Q M, Zeng A, Shang M S. Extracting the information backbone in online system[J]. PLOS ONE, 2013, 8(5): e62624. [4]Zeng A, Cimini G. Removing spurious interactions in complex networks[J]. Phys Rev E, 2012, 85(3): 036101. [5]Medo M, Wakeling J R. The effect of discrete vs. continuous-valued ratings on reputation and ranking systems[J]. Europhys. Lett, 2010, 91(4): 48004. [6]Zhou Y B, Lei T, Zhou T. A robust ranking algorithm to spamming[J]. Europhys Lett, 2011, 94(4): 48002. [7]Yang Z, Zhang Z K, Zhou T. Anchoring bias in online voting[J]. Europhys Lett, 2013, 100(6): 68002. [8]Noorian Z, Zhang J, Liu Y, et al. Trust-oriented buyer strategies for seller reporting and selection in competitive electronic marketplaces[J]. Auton Agent Multi-Ag, 2014, 28(6): 896-933. [9]Fouss F, Achbany Y, Saerens M. A probabilistic reputation model based on transaction ratings[J]. Inf Sci, 2010, 180(11): 2095-2123. [10] Galletti A, Giunta G, Schmid G. A mathematical model of collaborative reputation systems[J]. Int J of Comput. Math, 2012, 89(17): 2315-2332. [11] Laureti P, Moret L, Zhang Y C, et al. Information filtering via iterative refinement[J]. Europhys Lett, 2006, 75(6): 1006. [12] Ren J, Zhou T, Zhang Y C. Information filtering via self-consistent refinement[J]. Europhys Lett, 2008, 82(5): 58007. [13] Liao H, Zeng A, Xiao R, et al. Ranking reputation and quality in online rating systems[J]. PLOS ONE, 2014, 9(5): e97146. [14] De Kerchove C, Van Dooren P. Iterative filtering in reputation systems[J]. SIAM J Matrix Anal A, 2010, 31(4): 1812-1834. [15] Allahbakhsh M, Ignjatovic A. An iterative method for calculating robust rating scores[J]. IEEE Trans Parallel Distrib, 2015, 26(2): 340-350. [16] Liu X L, Guo Q, Hou L, et al. Ranking online quality and reputation via the user activity[J]. Physica A, 2015, 436: 629-636. [17] Gao J, Dong Y W, Shang M S, et al. Group-based ranking method for online rating systems with spamming attacks[J]. Europhys. Lett, 2015, 110(2): 28003. [18] Gao J, Zhou T. Evaluating user reputation in online rating systems via an iterative group-based ranking method[J]. Physica A, 2017, 473: 546-560. [19] Liu X L, Liu J G,Yang K, et al. Identifying online user reputation of user-object bipartite networks[J]. Physica A, 2017, 467: 508-516. [20] Fagin R, Lotem A, Naor M. Optimal aggregation algorithms for middleware[J]. J Comput Syst Sci, 2003, 66(4): 614-656. [21] Dalvi N, Suciu D. Efficient query evaluation on probabilistic databases[J]. VLDB J, 2007, 16(4): 523-544. [22] MacQueen J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967, 1(14): 281-297. [23] Balke W T, Güntzer U. Multi-objective query processing for database systems[C]//Proceedings of the 30th International Conference on Very Large DataBbases, Toront, Canada, 2004, 30: 936-947. [24] Kung H T, Luccio F, Preparata F P. On finding the maxima of a set of vectors[J]. J ACM, 1975, 22(4): 469-476. [25] Borzsony S, Kossmann D, Stocker K. The skyline operator[C]//Proceedings of the 17th International Conference on Data Engineering, Heidelberg,Germany, 2001: 421-430. [26] Tan K L, Eng P K, Ooi B C. Efficient progressive skyline computation[C]//Proceedings of the 27th International Conference on Very Large Data Bases. Roma. Italy, 2001, 1: 301-310. [27] Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: an online algorithm for skyline queries[C]//Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China, 2002: 275-286. [28] Chomicki J, Godfrey P, GryzJ, et al. Skyline with presorting: theory and optimizations[M]//Intelligent Information Processing and Web Mining. Springer Berlin Heidelberg, 2005: 595-604. [29] Papadias D, Tao Y, Fu G, et al. Progressive skyline computation in database systems[J]. ACM T Database Syst, 2005, 30(1): 41-82. [30] Chan C Y, Eng P K, Tan K L. Stratified computation of skylines with partially-ordered domains[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, 2005: 203-214. [31] Lo E, Yip K Y, Lin K I, et al. Progressive skylining over web-accessible database[J]. IEEE T Knowl Data En, 2006, 57(2): 122-147. [32] Balke W T, Güntzer U, Zheng J X. Efficient distributed skylining for web information systems[J]. Lect Notes Comput Sc, 2004, 2992:256-273. [33] 丁琳琳, 信俊昌, 王国仁,等. 基于Map-Reduce的海量数据高效Skyline查询处理[J].计算机学报, 2011,34(10): 1785-1796. Ding Linlin, Xin Junchang, Wang Guoren, et al. Efficient skyline query processing of massive data based on map-reduce[J]. Chinese Journal of Computers, 2011, 34(10): 1785-1796. [34] 王淑艳, 杨鑫, 李克秋. MapReduce框架下基于超平面投影划分的Skyline计算[J].计算机研究与发展, 2014, 51(12): 2702-2710. Wang Shuyan, Yang Xin, Li Keqiu. Skyline computing on map reduce with hyperplane-projections-based partition[J].Journal of Computer Research and Development, 2014, 51(12): 2702-2710. [35] Wu P, Zhang C, Feng Y, et al. Parallelizing skyline queries for scalable distribution[C]. International Conference on Advances in Database Technology (EDBT). Munich, Germany, 2006, 3896:112-130. [36] Wang S, Ooi B C, Tung A K H, et al. Efficient skyline query processing on peer-to-peer networks[C]//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, Turkey, 2007, 1126-1135. [37] Chen L, Cui B, Lu H, et al. iSky: efficient and progressive skyline computing in a structured P2P network[C]// Proceedings of the 28th International Conference on Distributed Computing Systems. Beijing, China, 2008: 160-167. [38] Li H, Tan Q, Lee W C. Efficient progressive processing of skyline queries in peer-to-peer systems[C] //Proceedings of the 1st International Conference on Scalable Information Systems. Hong Kong, China, 2006, 6(12):26. [39] Hose K, Lemke C, Sattler K U. Processing relaxed skylines in PDMS using distributed data summaries[C]// Proceedings of the 15th International Conference on Information & Knowledge Management. Arlington, Virginia, USA, 2006:425-434.