Identification on Spatio-temporal Characteristics of the Traffic of Communication System Based on Coupling Bipartite Network
TAN Guimin1, WANG Lina1,2, ZANG Chenrui3
1. College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China; 2. Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot 010051, China; 3. Inner Mongolia Branch, China Unicom, Hohhot 010050, China
Abstract:In order to identify the spatio-temporal characteristics of the traffic of communication system, Network model and core-periphery model is used to analyze the traffic data. Considering both the temporal information and the spatial information, we construct a data-voice coupled bipartite network. The edge weight distribution of the temporal network is lognormal. The maximal connected subgraph of the spatial network is denoted as S-network and it is a small world network. The edge weight of the S-network obeys power-law distribution. The frequency of coupling events in core is higher than that in periphery. The core-periphery model can effectively identifies spatio-temporal areas where data-voice coupling events occur intensively.
谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
TAN Guimin, WANG Lina, ZANG Chenrui. Identification on Spatio-temporal Characteristics of the Traffic of Communication System Based on Coupling Bipartite Network. Complex Systems and Complexity Science, 2022, 19(2): 71-79.
[1] GOWTHAM A, ANUJ K, VIPIN K. Spatio-temporal data mining: a survey of problems and methods[J]. ACM Computing Surveys, 2018, 51(4): 83. [2] JENG T H, CHEN Y M, CHEN C C, et al. MD-MinerP: interaction profiling bipartite graph mining for malware-control domain detection[J]. Security and Communication Networks, 2020, 2020: 8841544. [3] ZHANG L L, ZHAO M H, ZHAO D Z. Bipartite graph link prediction method with homogeneous nodes similarity for music recommendation[J]. Multimedia Tools and Applications, 2020, 79(19/20): 13197-13215. [4] 谭芳, 杨阳, 卓伊玲, 等. 网络隐私争议事件中用户隐私关注及情感对比研究[J]. 图书情报工作, 2021, 65(2): 87-97. TAN F, YANG Y, ZHUO Y L, et al. Comparison of privacy concern and sentimental characteristics of users in internet privacy controversial events[J]. Library and Information Service, 2021, 65(2): 87-97. [5] KABAKULAK B, TASKIN Z, PUSANE A. A branch-and-cut algorithm for a bipartite graph construction problem in digital communication systems[J]. Networks, 2020, 75(2): 137-157. [6] MANOOCHEHRI H, NOURANI M. Drug-target interaction prediction using semi-bipartite graph model and deep learning[J]. BMC Bioinformatics, 2020, 21(4): 248. [7] WANG Z C, ZHUO M, ARNOLD C. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing[J]. Bioinformatics, 2020, 36(1): 525-533. [8] YU Q, CHEN J, DU Y, et al. A method for building a genome-connectome bipartite graph model[J]. Journal of Neuroscience Methods, 2019, 320: 64-71. [9] 郗强, 唐锡晋.基于社会网络分析的“系统科学大会”可视化探析[J]. 系统科学与数学, 2018, 38(5): 521-536. XI Q, TANG X J. Visual exploration of CSSC2017 based on social network analysis[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(5): 521-536. [10] YANG S Y, NING L J, CAI X L, et al. Dynamic spatiotemporal causality analysis for network traffic flow based on transfer entropy and sliding window approach[J]. Joural of Advanced Transportation, 2021, 2021: 6616800. [11] JIANG C M, MAO Y F, CHAI Y, et al. Day-ahead renewable scenario forecasts based on generative adversarial networks[J]. International Journal of Energy Research, 2020, 45(5): 7572-7587. [12] WANG Y, TAYLOR J E. Coupling sentiment and human mobility in natural disasters: a twitter-based study of the 2014 south napa earthquake[J]. Natural Hazards, 2018, 92(2): 907-925. [13] CHARAKOPOULOS A K, KATSOULI G A, KARAKASIDIS T E. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 495(C): 436-453. [14] SMITH S, FOX P, MILLER K, et al. Correspondence of the brain's functional architecture during activation and rest[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 13040-13045. [15] BELLEC P, PERLBARG V, JBABDI S, et al. Identification of large-scale networks in the brain using fMRI[J]. NeuroImage, 2006, 29(4):1231-1243. [16] WANG L N, CHENG Y Y, ZANG C R. A symbolized time series network based on seasonal-trend-loess method[J]. Acta Physica Sinica, 2019, 68(23): 238901. [17] WANG X, ZHOU Z M, XIAO F, et al. Spatio-temporal analysis and predictionof cellular traffic in metropolis[J]. IEEE Transactions on Mobile Computing, 2019, 18(9): 2190-2202. [18] LI L Q, YANG Z A, NAI H, et al. Locally weighted adjustable parameter-based LPVG in the identification of functional regions[J]. 2019, 7: 99988-100002. [19] ENAMI S, SHIOMOTO K. Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks[C]// IEEE. 2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR). Xi'an, China, 2019:8808106. [20] BORGETTI S P, EVERETT M G. Models of core/periphery structures[J]. Social Networks, 1999, 21(4): 375-395. [21] BORGETTI S P, EVERETT M G. Network analysis of 2-mode data[J]. Social Networks, 1997, 19(3): 243-269. [22] WANG L N, WANG K, SHEN J L. Weighted complex networks in urban public transportation: modeling and testing[J]. Physica A-Statistical Mechanics and Its Applications, 2020, 545: 123498. [23] NEWMAN M E J. Networks: an Introduction[M]. New York: Oxford University Press, 2011: 117-122. [24] 郑伯铭, 刘安乐, 韩剑磊, 等. 云南省旅游经济联系网络结构演化与协同发展模式建构[J]. 经济地理, 2021, 41(2): 222-231. ZHENG B M, LIU A L, HAN J L, et al. The structural evolution of Yunnan tourism economic contact network and the construction of cooperative development model[J]. Economic Geography, 2021, 41(2): 222-231. [25] 初楠臣, 张平宇, 吴相利,等. 基于日流量视角的俄罗斯首府城市铁路客运网络空间特征[J]. 地理研究, 2021, 40(1): 247-262. CHU N C, ZHANG P Y, WU X L, et al. The spatial characteristics of railway passenger network in Russian capital cities based on the daily railway passenger flow[J]. Geographical Research, 2021, 40(1): 247-262. [26] YU J, MA J. Social network analysis as a tool for the analysis of the international trade network of aquatic products[J]. Aquaculture International, 2020, 28(3): 1195-1211. [27] GARCIA A, DUVA M, MOLLAOGLU S, et al. Expertise flows and network structures in AEC project teams[C]// GRAU D, TANG P, ELASMAR M. Construction Research Congress. Arizona State Univ, Del E Webb Sch Construct, Tempe, AZ, 2020: 95-104.