Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 71-79    DOI: 10.13306/j.1672-3813.2022.02.009
  本期目录 | 过刊浏览 | 高级检索 |
耦合二分网络识别通信系统流量的时空特征
谭桂敏1, 汪丽娜1,2, 臧臣瑞3
1.内蒙古工业大学理学院,呼和浩特 010051;
2.内蒙古生命数据统计分析理论与神经网络建模重点实验室,呼和浩特 010051;
3.中国联合网络通信有限公司内蒙古分公司,呼和浩特 010050
Identification on Spatio-temporal Characteristics of the Traffic of Communication System Based on Coupling Bipartite Network
TAN Guimin1, WANG Lina1,2, ZANG Chenrui3
1. College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China;
2. Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot 010051, China;
3. Inner Mongolia Branch, China Unicom, Hohhot 010050, China
全文: PDF(2379 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为识别通信系统流量的时空特征,利用网络建模与核心—边缘模型分析移动通信流量数据。综合考虑时间信息和空间信息,构建吞吐量—话务量耦合二分网络。时间单分网络边权分布为对数正态分布。空间单分网络的最大连通子图S网络为小世界网络;S网络的边权分布为幂律分布。核心区节点上耦合事件的发生频率高于边缘区节点上耦合事件的发生频率。核心—边缘模型能有效识别出吞吐量—话务量耦合事件的群聚群发区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭桂敏
汪丽娜
臧臣瑞
关键词 二分网络时空聚类幂律分布鲁棒性    
Abstract:In order to identify the spatio-temporal characteristics of the traffic of communication system, Network model and core-periphery model is used to analyze the traffic data. Considering both the temporal information and the spatial information, we construct a data-voice coupled bipartite network. The edge weight distribution of the temporal network is lognormal. The maximal connected subgraph of the spatial network is denoted as S-network and it is a small world network. The edge weight of the S-network obeys power-law distribution. The frequency of coupling events in core is higher than that in periphery. The core-periphery model can effectively identifies spatio-temporal areas where data-voice coupling events occur intensively.
Key wordsbipartite network    spatio-temporal clustering    power-law distribution    robust
收稿日期: 2021-03-16      出版日期: 2022-05-23
ZTFLH:  O231.5  
  TN929.5  
基金资助:内蒙古自然科学基金(2018LH01012)
通讯作者: 汪丽娜(1980-),女,内蒙古呼和浩特人,博士,副教授,主要研究方向为复杂网络,时空数据挖掘。   
作者简介: 谭桂敏(1995-),女,内蒙古赤峰人,硕士研究生,主要研究方向为复杂网络,时空数据挖掘。
引用本文:   
谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
TAN Guimin, WANG Lina, ZANG Chenrui. Identification on Spatio-temporal Characteristics of the Traffic of Communication System Based on Coupling Bipartite Network. Complex Systems and Complexity Science, 2022, 19(2): 71-79.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.009      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/71
[1] GOWTHAM A, ANUJ K, VIPIN K. Spatio-temporal data mining: a survey of problems and methods[J]. ACM Computing Surveys, 2018, 51(4): 83.
[2] JENG T H, CHEN Y M, CHEN C C, et al. MD-MinerP: interaction profiling bipartite graph mining for malware-control domain detection[J]. Security and Communication Networks, 2020, 2020: 8841544.
[3] ZHANG L L, ZHAO M H, ZHAO D Z. Bipartite graph link prediction method with homogeneous nodes similarity for music recommendation[J]. Multimedia Tools and Applications, 2020, 79(19/20): 13197-13215.
[4] 谭芳, 杨阳, 卓伊玲, 等. 网络隐私争议事件中用户隐私关注及情感对比研究[J]. 图书情报工作, 2021, 65(2): 87-97.
TAN F, YANG Y, ZHUO Y L, et al. Comparison of privacy concern and sentimental characteristics of users in internet privacy controversial events[J]. Library and Information Service, 2021, 65(2): 87-97.
[5] KABAKULAK B, TASKIN Z, PUSANE A. A branch-and-cut algorithm for a bipartite graph construction problem in digital communication systems[J]. Networks, 2020, 75(2): 137-157.
[6] MANOOCHEHRI H, NOURANI M. Drug-target interaction prediction using semi-bipartite graph model and deep learning[J]. BMC Bioinformatics, 2020, 21(4): 248.
[7] WANG Z C, ZHUO M, ARNOLD C. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing[J]. Bioinformatics, 2020, 36(1): 525-533.
[8] YU Q, CHEN J, DU Y, et al. A method for building a genome-connectome bipartite graph model[J]. Journal of Neuroscience Methods, 2019, 320: 64-71.
[9] 郗强, 唐锡晋.基于社会网络分析的“系统科学大会”可视化探析[J]. 系统科学与数学, 2018, 38(5): 521-536.
XI Q, TANG X J. Visual exploration of CSSC2017 based on social network analysis[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(5): 521-536.
[10] YANG S Y, NING L J, CAI X L, et al. Dynamic spatiotemporal causality analysis for network traffic flow based on transfer entropy and sliding window approach[J]. Joural of Advanced Transportation, 2021, 2021: 6616800.
[11] JIANG C M, MAO Y F, CHAI Y, et al. Day-ahead renewable scenario forecasts based on generative adversarial networks[J]. International Journal of Energy Research, 2020, 45(5): 7572-7587.
[12] WANG Y, TAYLOR J E. Coupling sentiment and human mobility in natural disasters: a twitter-based study of the 2014 south napa earthquake[J]. Natural Hazards, 2018, 92(2): 907-925.
[13] CHARAKOPOULOS A K, KATSOULI G A, KARAKASIDIS T E. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 495(C): 436-453.
[14] SMITH S, FOX P, MILLER K, et al. Correspondence of the brain's functional architecture during activation and rest[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 13040-13045.
[15] BELLEC P, PERLBARG V, JBABDI S, et al. Identification of large-scale networks in the brain using fMRI[J]. NeuroImage, 2006, 29(4):1231-1243.
[16] WANG L N, CHENG Y Y, ZANG C R. A symbolized time series network based on seasonal-trend-loess method[J]. Acta Physica Sinica, 2019, 68(23): 238901.
[17] WANG X, ZHOU Z M, XIAO F, et al. Spatio-temporal analysis and predictionof cellular traffic in metropolis[J]. IEEE Transactions on Mobile Computing, 2019, 18(9): 2190-2202.
[18] LI L Q, YANG Z A, NAI H, et al. Locally weighted adjustable parameter-based LPVG in the identification of functional regions[J]. 2019, 7: 99988-100002.
[19] ENAMI S, SHIOMOTO K. Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks[C]// IEEE. 2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR). Xi'an, China, 2019:8808106.
[20] BORGETTI S P, EVERETT M G. Models of core/periphery structures[J]. Social Networks, 1999, 21(4): 375-395.
[21] BORGETTI S P, EVERETT M G. Network analysis of 2-mode data[J]. Social Networks, 1997, 19(3): 243-269.
[22] WANG L N, WANG K, SHEN J L. Weighted complex networks in urban public transportation: modeling and testing[J]. Physica A-Statistical Mechanics and Its Applications, 2020, 545: 123498.
[23] NEWMAN M E J. Networks: an Introduction[M]. New York: Oxford University Press, 2011: 117-122.
[24] 郑伯铭, 刘安乐, 韩剑磊, 等. 云南省旅游经济联系网络结构演化与协同发展模式建构[J]. 经济地理, 2021, 41(2): 222-231.
ZHENG B M, LIU A L, HAN J L, et al. The structural evolution of Yunnan tourism economic contact network and the construction of cooperative development model[J]. Economic Geography, 2021, 41(2): 222-231.
[25] 初楠臣, 张平宇, 吴相利,等. 基于日流量视角的俄罗斯首府城市铁路客运网络空间特征[J]. 地理研究, 2021, 40(1): 247-262.
CHU N C, ZHANG P Y, WU X L, et al. The spatial characteristics of railway passenger network in Russian capital cities based on the daily railway passenger flow[J]. Geographical Research, 2021, 40(1): 247-262.
[26] YU J, MA J. Social network analysis as a tool for the analysis of the international trade network of aquatic products[J]. Aquaculture International, 2020, 28(3): 1195-1211.
[27] GARCIA A, DUVA M, MOLLAOGLU S, et al. Expertise flows and network structures in AEC project teams[C]// GRAU D, TANG P, ELASMAR M. Construction Research Congress. Arizona State Univ, Del E Webb Sch Construct, Tempe, AZ, 2020: 95-104.
[1] 王志平, 王佳. 基于超网络的舆论演化动态模型[J]. 复杂系统与复杂性科学, 2021, 18(2): 29-38.
[2] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[3] 覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
[4] 卢美丽, 高宇佳, 叶作亮. 在线顾客购买阵发性的测量和调节作用[J]. 复杂系统与复杂性科学, 2020, 17(1): 71-80.
[5] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[6] 李鹤龄, 王雅婷, 杨斌, 沈宏君. 完全开放系统的幂律分布及其适用对象[J]. 复杂系统与复杂性科学, 2019, 16(3): 71-78.
[7] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[8] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[9] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[10] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed