Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (1): 31-37    DOI: 10.13306/j.1672-3813.2018.01.005
  本期目录 | 过刊浏览 | 高级检索 |
双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例
吴宗柠a, 吕俊宇a, 蔡宏波b, 樊瑛a
北京师范大学a.系统科学学院;b.经济与工商管理学院,北京 100875
Modeling and Analysis of International Trade Network in Hyperbolic Space ——Case of the International Wheat Trade
WU Zongninga, Lü Junyua,CAI Hongbob, FAN Yinga
a.School of Systems Science; b.Business School, Beijing Normal University, Beijing 100875,China
全文: PDF(986 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 将国家经济规模和贸易距离结合在一起,基于双曲几何理论,将国际贸易网络嵌入双曲空间。首先用骨架网络提取方法对贸易网络进行预处理,以保证映射精度,然后基于小麦贸易数据和复杂网络几何框架将国际贸易网络映射到双曲空间,结果表明小麦贸易具有“核心边缘”结构,即美国、加拿大、澳大利亚等国处于贸易网络的核心地位。随着时间演化,美国和加拿大等贸易大国一直处于世界前列,俄罗斯的贸易影响力在提升,而中国则呈现逐年下滑的态势。此外,国际小麦贸易双曲网络的坐标还揭示了经济学含义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴宗柠
吕俊宇
蔡宏波
樊瑛
关键词 复杂网络国际小麦贸易双曲空间网络映射    
Abstract:Based on the theory of hyperbolic geometry, the international trade network is embedded in hyperbolic space by combining the national economy with trade distance. In order to ensure the accuracy of mapping, this paper preprocesses the method of backbone network firstly. And then the geometric framework of complex network is applied to map trade network to the hyperbolic space based on wheat trade data. The results demonstrate that hyperbolic network not only reflect the structure of "core-periphery", namely the United States, Canada, Australia and other countries at the core of the trade network. Over time, major trading nations, such as the United States and Canada have been at the forefront of the world. Russia's trade influence is on the rise, while China is showing a declining trend year by year. In addition, the coordinates of the international wheat hyperbolic network reveal the economic implications.
Key wordscomplex network    weat international trade    hperbolic sace    ntwork mpping
收稿日期: 2017-11-09      出版日期: 2019-01-10
ZTFLH:  N949  
  F740  
基金资助:国家自然科学基金(61573065,71773007,71403024)、北京市社会科学基金(17YJB020)、国家社科基金重大项目(16ZDA026)、北京师范大学学科交叉建设项目(2016)
作者简介: 吴宗柠(1993),男,福建宁德人,硕士研究生,主要研究方向为国际贸易网络、网络嵌入。
引用本文:   
吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
WU Zongning, Lü Junyu,CAI Hongbo, FAN Ying. Modeling and Analysis of International Trade Network in Hyperbolic Space ——Case of the International Wheat Trade. Complex Systems and Complexity Science, 2018, 15(1): 31-37.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.01.005      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I1/31
[1]Serrano M A, Bogun M. Topology of the world trade web [J]. Phys Rev E, 2003, 68(1): 015101.
[2]Li X, Jin Y Y, Chen G. Complexity and synchronization of the world trade web [J]. Physica A, 2003, 328(1): 28796.
[3]Newman M E, Girvan M. Finding and evaluating community structure in networks [J]. Physrev E, 2004, 69(2): 026113.
[4]Duch J, Arenas A. Community detection in complex networks using extremal optimization [J]. Phys Rev E , 2005, 72(2): 027104.
[5]Piccardi C, Tajoli L. Existence and significance of communities in the world trade web [J]. Phys Review E, 2012, 85(6): 066119.
[6]Fan Y, Ren S, Cai H, et al. The state's role and position in international trade: a complex network perspective [J]. Economic Modelling, 2014, 39:7181.
[7]Arribas I, Pérez F, Tortosa-Ausina E. The dynamics of international trade integration: 19672004 [J]. Empirical Economics, 2014, 46(1): 1941.
[8]Garlaschelli D, Matteo T D, Aste T, et al. Interplay between topology and dynamics in the World Trade Web [J]. The European Physical Journal B, 2007, 57(2): 159164.
[9]Garlaschelli D, Loffredo M I. Fitness-dependent topological properties of the world trade web [J]. Phys Rev Lett, 2004, 93(18): 188701.
[10] Yotov Y V. A simple solution to the distance puzzle in international trade [J]. Economics Letters, 2012, 117(3): 794798.
[11] Borchert I, Yotov Y V. Distance, globalization, and international trade [J]. Economics Letters, 2017, 153:3238.
[12] Guo L, Lou X, Shi P, Et al. Flow distances on open flow networks [J]. Physica A, 2015, 437:235248.
[13] Brockmann D, Helbing D. The hidden geometry of complex, network-driven contagion phenomena [J]. Science, 2013, 342(6164): 1337.
[14] Krioukov D, Papadopoulos F, Kitsak M, Et al. Hyperbolic geometry of complex networks [J]. Phys Rev E, 2010, 82(32): 036106.
[15] Serrano M Á, Bogu M, Sagu S F. Uncovering the hidden geometry behind metabolic networks [J]. Molecular Biosystems, 2012, 8(3): 843850.
[16] Boguna M, Papadopoulos F, Krioukov D. Sustaining the Internet with hyperbolic mapping [J]. Nat Commun, 2010, 1:62.
[17] Guillermo G P , Marián B, Antoine A, et al. The hidden hyperbolic geometry of international trade: World Trade Atlas 18702013 [J]. Sci Rep, 2016, 6:33441.
[18] Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities [J]. Nature, 2001, 410(6829): 655.
[19] Serrano M Á, Bogun M, Vespignani A. Patterns of dominant flows in the world trade web [J]. Journal of Economic Interaction and Coordination, 2007, 2(2): 111124.
[20] Serrano M A, Krioukov D, Bogun M. Self-similarity of complex networks and hidden metric spaces [J]. Phys Rev Lett, 2008, 100(7): 078701.
[21] Papadopoulos F, Kitsak M, Serrano M A, et al. Popularity versus similarity in growing networks [J]. Nature, 2012, 489(7417): 537540.
[22] Bertioli D J, Cooper J I, Edwards M L, et al. Network mapping by replaying hyperbolic growth [J]. IEEE/ACM Transactions on Networking, 2015, 23(1): 198211.
[23] Serrano M A, Krioukov D, Boguna M. Self-similarity of complex networks and hidden metric spaces [J]. Phys Rev Lett, 2008, 100(7): 078701.
[24] Oh C Y, Lee D S. Entropy of international trades [J]. Physreve, 2017, 95(51): 052319.
[25] 钱静斐, 李宁辉, 程广燕, et al. 俄罗斯、乌克兰及哈萨克斯坦小麦减产对中国市场的影响分析 [J]. 农业展望, 2010, 6(10): 5155.
Qian Jingfei, Li Ninghui, Cheng Guangyan,et al. Analysis the impact of reduced wheat production in russia, ukraine and kazakhstan on the Chinese market[J]. Agricultural Outlook, 2010, 6(10): 5155.
[26]王子慧, 田志宏. 俄罗斯农产品的国际竞争力及中俄双边贸易分析 [J]. 世界农业, 2013, 9: 8590.
Wang Zihui, Tian Zhihong. Analysis on the international competitiveness of agricultural products in Russia and the Sino-Russian bilateral trade [J]. World Agriculture, 2013, 9: 8590.
[27]魏益民. 中国优质小麦生产的现状与问题分析 [J]. 麦类作物学报, 2004, 24(1): 9596.
Wei Yiming. Analysis on the current status and problem of quality wheat production in China[J]. Journal of Triticeae Crops, 2004, 24(1): 9596.
[1] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[2] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[3] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[4] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[5] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
[6] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed