Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (4): 51-57    DOI: 10.13306/j.1672-3813.2017.04.005
  本期目录 | 过刊浏览 | 高级检索 |
两层星型网络上的传染病建模和控制
郑国庆, 唐清干, 祝光湖
桂林电子科技大学数学与计算科学学院,桂林 541004
Model and Control of Epidemics on a Star-Coupled Interconnected Network
ZHENG Guoqing, TANG Qinggan, ZHU Guanghu
School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
全文: PDF(1081 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了研究传染病在星型耦合网络上的传播规律,在两层星型网络上建立了一个新的有效度传染病模型,其网络结构对应由两个中心城市与周边县城构成的交通系统(忽略县城相互连接)。利用下一代生成矩阵计算模型的传播阈值,并数值分析影响阈值的主要因素。接着讨论切断传播途径和免疫易感人群等控制策略所对应的阈值变化。研究发现切断边界与中心的传播途径以及免疫中心节点对降低发病率最有效。结果可为传染病动力学的建模分析和疾病控制提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑国庆
唐清干
祝光湖
关键词 星型耦合网络传播动力学有效度模型传播阈值    
Abstract:To study the transmission patterns of epidemics in star-couple interconnected networks, we establish an effective degree epidemic model in a two-layer star-coupled network. The network structure corresponds to a transportation system that connects two central cities and the surrounding towns (ignoring the connections between towns). We first calculate the spreading threshold by using the next generation matrix and numerically explore the main influence factors. We then analyze the thresholds in case of different control strategies including cutting node connections and vaccinating susceptible nodes. The results indicate that cutting the connections between center and boundary and vaccinating the center are most effective for disease control. The findings can provide good reference for the modeling and analysis of epidemic dynamics
Key wordsstar-coupled network    spreading dynamics    effective degree models    spreading threshold
收稿日期: 2016-07-27      出版日期: 2019-01-16
ZTFLH:  O29  
  N94  
基金资助:国家自然科学基金(11661026)
通讯作者: 祝光湖(1979),男,广西桂平人,博士,副教授,主要研究生物数学。   
作者简介: 郑国庆(1989-),男,安徽安庆人,硕士研究生,主要研究复杂网络传播动力学。
引用本文:   
郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
ZHENG Guoqing, TANG Qinggan, ZHU Guanghu. Model and Control of Epidemics on a Star-Coupled Interconnected Network. Complex Systems and Complexity Science, 2017, 14(4): 51-57.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.04.005      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I4/51
[1]马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
[2]Diekmann O, Heesterbeek J A P. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation [M]. New York: Wiley, 2000.
[3]Read J M, Keeling M J. Disease evolution on networks: the role of contact structure [J]. Proc R Soc Lond B, 2003, 270: 699708.
[4]汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
[5]Newmann M E J. The structure and function of complex networks [J]. SIAM Rev, 2003, 45: 167256.
[6]Gao J, Buldyrev S V, Stanley H E, Havlin S. Networks formed from interdependent networks [J]. Nature Phys, 2012, 8: 4048.
[7]Cohen R, Havlin S, et al. Efficient immunization strategies for computer networks and populations [J]. Phys Rev Lett, 2003, 91(24): 247901.
[8]王琴,祝光湖,傅新楚.有向网络上流行病阈值比较和免疫分析[J].复杂系统与复杂性科学, 2012, 9(4): 2633.
Wang Qin, Zhu Guanghu, Fu Xinchu. Comparison of epidemic thresholds on directed networks and immunization analysis [J]. Complex Systems and Complexity Science, 2002, 9(4): 2633.
[9]Fu X C, Michael S, et al. Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization [J]. Phys Rev E, 2008, 77: 036113.
[10] 王阳阳,阚佳倩,张海峰.个体的多策略行为不利于控制疾病传播[J].复杂系统与复杂性科学, 2015, 12(3): 1418.
Wang Yangyang, Kan Jiaqian, Zhang Haifeng. Individuals' multi-strategy behavior is not conducive to control the spread of epidemic [J]. Complex Systems and Complexity Science, 2015, 12 (3):1418.
[11] Jennifer L, Ma J, P van den D, et al. Effective degree network disease models [J]. Mathematical Biology, 2011, 62:143164.
[12] Ma J, Pvan den D, Frederick H W. Effective degree household network disease model [J]. Mathematical Biology, 2013, 66: 7594.
[13] 郑国庆,唐清干,祝光湖.带接种免疫的网络传染病的有效度模型[J].数学的实践与认识,2015, 45(15): 315322.
Zheng Guoqing, Tang Qingan, Zhu Guanghu. An effective degree epidemic model with vaccination on networks [J]. Mathematics in Practice and Theory, 2015, 45(15): 315322.
[14] Pvan den D, James W. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J]. Mathematical Biosciences, 2002, 180: 2948.
[1] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed