Adaptive Fuzzy Synchronization Control for a Class of Uncertain Chaotic Systems
GAO Zilin1,2, WANG Yinhe1
1.School of Automation, Guangdong University of Technology, Guangzhou, 510006, China; 2.School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
Abstract:For a class of chaotic systems with unknown nonlinear functions, parameters and disturbances, by employing a time-varying parameter into T-S fuzzy logic systems with nonlinear consequents (T-S-FLS-NRC), the adaptive fuzzy synchronization controller is designed based on the online estimation of parameters by the adaptive method, and the asymptotical synchronization of drive-response chaotic systems is achieved. Generally speaking, T-S-FLS-NRC has higher approximation ability, and we can use the fewer fuzzy rules to approximate the unknown nonlinearities in master and slave systems. Moreover, the number of parameter adaptive laws is not related with the number of fuzzy rules during the process of designing the synchronization controller. Therefore, the synchronization method in this paper is able not only to reduce the on-line computational burden significantly but also to be broader applications for the fuzzy logic systems with few fuzzy rules and high interpretability by using intuition inferences. Finally, the simulations show the validity of the method in this paper.
高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
GAO Zilin, WANG Yinhe. Adaptive Fuzzy Synchronization Control for a Class of Uncertain Chaotic Systems. Complex Systems and Complexity Science, 2017, 14(4): 79-88.
[1]Pecora L M, Carrol T L. Synchronization in chaotic systems[J]. Physical Review Letters, 64(8): 821824. [2]禹思敏, 吕金虎, 李澄清. 混沌密码及其在多媒体保密通信中应用的进展[J]. 电子与信息学报, 2016, 38(3): 735752. Yu Simin, Lü Jinhu, Li Changqing. Some progresses of chaotic cipher and its applications in multimedia secure communications[J]. Journal of Electronics and Information Technology, 2016, 38(3): 735752. [3]Boulkroune A, Bouzeriba A, Bouden T. Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems[J]. Neurocomputing, 2016, 173(P3): 606614. [4]Blagojevic′ S N, Cˇupic′ Zˇ, Ivanovic′-Sˇasˇic′ A, et al. Mixed-mode oscillations and chaos in return maps of an oscillatory chemical reaction[J]. Russian Journal of Physical Chemistry A, 2015, 89(13): 23492358. [5]Ojo K S, Njah A N, Olusola O I. Generalized compound synchronization of chaos in different orders chaotic Josephson junctions[J]. International Journal of Dynamics and Control, 2016, 64(1):19. [6]Li G Z, Zhang B. A novel weak signal detection method via chaotic synchronization using Chua's circuit[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 22552265. [7]Zhang L L, Wang Y H, Wang Q Y. Adaptive fuzzy synchronization for uncertain chaotic systems with different dimensions and disturbances[J]. International Journal of Fuzzy Systems, 2015, 17(2): 309320. [8]Loria A, Panteley E, Zavala-Rio A. Adaptive observers with persistency of excitation for synchronization of chaotic systems[J]. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2010, 56(12): 27032716. [9]仓诗建, 吴爱国, 王忠林,等. 一个广义Hamilton系统的混沌特性及电路实现[J]. 复杂系统与复杂性科学, 2017(1): 103110. Cang Shijian, Wu Aiguo, Wang Zhonglin, et al. Chaotic behavior of a generalized Hamiltonian system and its circuit implementation[J]. Complex Systems and Complexity Science, 2017(1): 103110. [10] Wu Z G, Shi P, Su H, et al. Local synchronization of chaotic neural networks with sampled-data and saturating actuators.[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 26352645. [11] Guo W L, Chen S H, Zhou H. A simple adaptive-feedback controller for chaos synchronization[J]. Chaos Solitons and Fractals, 2009, 39(39): 316321. [12] 张友安, 余名哲, 吴华丽. 基于自适应神经网络的分数阶混沌系统滑模同步[J]. 控制与决策, 2015, 30(5): 882886. Zhang Youan, Yu Mingzhe, Wu Huali. Sliding mode synchronization of fractional-order chaotic systems based on adaptive neural network[J]. Control and Decision, 2015, 30(5): 882886. [13] 付景超, 张中华. 超混沌Bao系统线性状态反馈控制及自适应控制[J]. 控制与决策, 2016, 31(9): 17071710. Fu Jingchao, Zhang Zhonghua. Linear state feedback control and adaptive backstepping control of hyperchaotic Bao system[J]. Control and Decision, 2016, 31(9): 17071710. [14] Lü J H, Zhang S H. Controlling Chen's chaotic attractor using backstepping design based on parameters identification[J]. Physics Letters A, 2001, 286(2): 148152. [15] Liu Y C. Chaotic control using fuzzy model-based methods[J]. International Journal of Bifurcation and Chaos, 2002, 12(08): 18271841. [16] Lam H K, Seneviratne L D. Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach[J]. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2008, 55(3): 883892. [17] Liu Y, Zhao S. T-S fuzzy model-based impulsive control for chaotic systems and its application[J]. Mathematics and Computers in Simulation, 2011, 81(11): 25072516. [18] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation and orthogonal least squares learning[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 807814. [19] 于金鹏, 于海生, 高军伟,等. 基于模糊逼近的永磁同步电机混沌控制[J]. 复杂系统与复杂性科学, 2013, 10(4):8691. Yu Jinpeng, Yu Haisheng, Gao Junwei, et al. Chaos control of permanent magnet synchronous motors based on fuzzy-approximation[J]. Complex Systems and Complexity Science, 2013, 10(4): 8691. [20] Hwang E J, Hyun C H, Kim E, et al. Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach[J].Physics Letters A, 2009, 373(22): 19351939. [21] Chen B, Liu X P, Tong S C. Adaptive fuzzy approach to control unified chaotic systems[J]. Chaos, Solitons and Fractals, 2007, 34(4): 11801187. [22] Rajesh R, Kaimal M R. T-S fuzzy model with nonlinear consequence and PDC controller for a class of nonlinear control systems[J]. Applied Soft Computing, 2007, 7(3): 772782. [23] 朱慧坚, 曾才斌. 参数完全未知的不同混沌系统的尺度与混合同步[J]. 控制理论与应用, 2015, 32(3): 341346. Zhu Huijian, Zeng Caibin. Scaling and mixed synchronization for different chaotic systems with totally unknown parameters[J]. Control Theory and Applications, 2015, 32(3): 341346. [24] Othman A A, Noorani M S M, AlSawalha M M. Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters[J]. Optik, 2016, 127(19):78527864. [25] Pourmahmood M, Khanmohammadi S, Alizadeh G. Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(7):28532868. [26] 王春妮. 基于自适应同步的超混沌Chen系统的参数识别[J]. 复杂系统与复杂性科学, 2010, 07(1): 3339. Wang Chunni. Parameter identification of hyperchaotic Chen system by using adaptive synchronization scheme[J]. Complex Systems and Complexity Science, 2010, 07(1): 3339. [27] 高俊山, 宋歌, 邓立为. 具有未知参数的混沌系统的有限时间滑模同步控制[J]. 控制与决策, 2017, 32(1): 149156.Gao Junshan, Song Ge, Deng Liwei. Finite-time sliding mode synchronization control of chaotic systems with uncertain parameters[J]. Control and Decision, 2017, 32(1): 149156. [28] 王诗兵, 王兴元. 超混沌复系统的自适应广义组合复同步及参数辨识[J]. 电子与信息学报, 2016, 38(8): 20622067. Wang shibing, Wang Xingyuan. Adaptive generalized combination complex synchronization and parameter identification of hyperchaotic complex systems[J]. Journal of Electronics and Information Technology, 2016, 38(8): 20622067. [29] Li C B, Sprott J C, Thio W. Linearization of the Lorenz system[J]. Physics Letters A, 2015, 379(1011): 888893.