Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (4): 97-104    DOI: 10.13306/j.1672-3813.2017.04.011
  本期目录 | 过刊浏览 | 高级检索 |
基于保证集的多智能体系统自触发控制
成云, 宋运忠
河南理工大学电气工程与自动化学院,河南 焦作 454000
Guaranteed Set Based Self-Triggered Control of Multi-Agent Systems
CHENG Yun, SONG Yunzhong
School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
全文: PDF(1063 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了解决网络化信息物理系统中分布式控制器的实时执行问题,在智能体状态可达集的基础上,提出了一种基于保证集的新的分布式自触发控制策略。在这一策略下,智能体向彼此发送关于它们自身可达状态的信息,即状态的保证集。这些保证集提供的信息使得每个智能体可以在未来自治地安排需要请求新信息的时刻,也为在较低的执行代价下仍能保证较好的性能水平奠定了基础。理论上证明了,在所提出的分布式策略下的李雅普诺夫函数是单调不增的。一个多智能体系统运动控制问题的仿真结果验证了所提方法正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成云
宋运忠
关键词 网络化信息物理系统实时执行可达集保证集自触发控制    
Abstract:In order to address real-time manipulation of the networked cyber-physical systems in a distributed style, a new self-triggered strategy was suggested. Different from the already existed strategies, the guaranteed set was borrowed to join in, where agents could exchange information about their future reachable states. And moreover, the up-coming reachable states were collectively coined as guaranteed set. The available guaranteed set made it possible for the agents to autonomously schedule the instant requested information in the up-coming horizon. On account of that, the leveraged performance with lower cost, was turned into reality. At the same time, the Lyapunov function was built to verify the effectiveness of the suggested scheme, where the simulation results of a multi-agent system was also added in to keep the integrity of the touched upon idea.
Key wordsnetworked cyber-physical systems    real-time execution    reachable set    guaranteed set    self-triggered control
收稿日期: 2017-05-10      出版日期: 2019-01-16
ZTFLH:  TP273  
基金资助:国家自然科学基金(61340041,61374079)
通讯作者: 宋运忠(1968),男,河南民权人,博士,教授,主要研究方向为复杂系统的分析与控制。   
作者简介: 成云(1991-),男,河南永城人,硕士研究生,主要研究方向为复杂系统建模与控制。
引用本文:   
成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
CHENG Yun, SONG Yunzhong. Guaranteed Set Based Self-Triggered Control of Multi-Agent Systems. Complex Systems and Complexity Science, 2017, 14(4): 97-104.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.04.011      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I4/97
[1]Kim K D, Kumar P R. Cyber-physical systems: a perspective at the centennial[J]. Proceedings of the IEEE, 2012, 100:12871308.
[2]Sztipanovits J, Koutsoukos X, Karsai G, et al. Toward a science of cyber-physical system integration[J]. Proceedings of the IEEE, 2012, 100(1):2944.
[3]薛磊, 王庆领, 孙长银. 博弈论框架下的二阶多智能体系统领导者选择算法[J]. 控制理论与应用, 2016,33(12):15931602.
Xue Lei, Wang Qingling, Sun Changyin. Game theoretical approach for the leader selection of the second-order multi-agent system[J]. Control Theory & Applications, 2016, 33(12):15931602.
[4]金治群, 牛玉刚, 邹媛媛. 带有滑模观测器的多智能体一致性控制[J]. 控制理论与应用, 2017, 34(2):251259.
Jin Zhiqun, Niu Yugang, Zou Yuanyuan. Consensus for multi-agent systems with sliding-mode observer[J]. Control Theory & Applications, 2017, 34(2):251259.
[5]孙戎, 贾英民. 多智能体网络一致性鲁棒H∞控制问题[J]. 复杂系统与复杂性科学, 2012,9(1):1622.
Sun Rong, Jia Yingmin. Robust H∞ control problem consensus of multi-agent network[J]. Complex Systems and Complexity Science, 2012,9(1):1622.
[6]杨洪勇, 徐邦海, 刘飞, 等. 分数阶多智能体系统的时延一致性[J]. 复杂系统与复杂性科学, 2013, 10(3):8185.
Yang Hongyong, Xu Banghai, Liu Fei, et al. Consensus of fractional-order multi-agent systems with communication delay[J]. Complex Systems and Complexity Science, 2013, 10(3):8185.
[7]李勃, 陈增强, 刘忠信, 等. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2):105110.
Li Bo, Chen Zengqiang, Liu Zhongxin, et al. Containment control for multi-agent system with multiple stationary leaders and time-delays[J]. Complex Systems and Complexity Science, 2016, 13(2):105110.
[8]宋运忠, 赵威. 基于群体社会制度策略的主从多智能体汇聚[J]. 复杂系统与复杂性科学, 2012, 9(1):8894.
Song Yunzhong, Zhao Wei. Leader follower multi-agents network rendezvous via swarm social system strategies[J]. Complex Systems and Complexity Science, 2012, 9(1):8894.
[9]窦全胜, 刘柏枫, 厉玉蓉, 等. 线性均方一致性问题的偏差估计[J]. 自动化学报, 2017, 43(4):568575.
Dou Quansheng, Liu Baifeng, Liu Yurong, et al. Variance estimation for linear mean square consensus problem[J]. Acta Automatica Sinica, 2017, 43(4):568575.
[10] 李宗刚, 谢广明, 高溥. 一类线性多智能体系统输出反馈H∞包围控制[J]. 复杂系统与复杂性科学, 2013, 10(3):8694.
Li Zonggang, Xie Guangming, Gao Pu. Output feedback H∞ containment control of linear multi-agent system[J]. Complex Systems and Complexity Science, 2013, 10(3):8694.
[11] Hristu-Varsakelis D, Levine W S, Alur R, et al. Handbook of Networked and Embedded Control Systems (Control Engineering)[M]. Birkhäuser Boston, 2005.
[12] Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9):16801685.
[13] Donkers M C F, Heemels W P M H. Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[J]. IEEE Transactions on Automatic Control, 2012, 57(6):13621376.
[14] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012,57(5):1291 1297.
[15] Garcia E, Antsaklis P J. Model-based event-triggered control for systems with quantization and time-varying network delays[J]. IEEE Transactions on Automatic Control, 2013, 58(2):422434.
[16] Heemels W P M H, Donkers M C F. Model-based periodic event-triggered control for linear systems [J]. Automatica, 2013, 49(3):698711.
[17] Wang X, Lemmon M D. Event-triggered broadcasting across distributed networked control systems[C]// American Control Conference, IEEE, 2008:31393144.
[18] 杨若涵, 张皓, 严怀成. 基于事件触发的拓扑切换异构多智能体协同输出调节[J].自动化学报, 2017, 43(3):472477.
Yang Ruohan, Zhang Hao, Yan Huaicheng. Event-triggered cooperative output regulation of heterogeneous multi-agent systems with switching topology[J]. Acta Automatica Sinica, 2017, 43(3):472477.
[19] Velasco M, Mart P, Fuertes J M. The self triggered task model for real-time control systems[C]∥ 24th IEEE Real-Time Systems Symposium, 2004:6770.
[20] Anta A, Tabuada P. To sample or not to sample: self-triggered control for nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 55(9):20302042.
[21] Nowzari C S J. Self-triggered coordination of robotic networks for optimal deployment[J]. Automatica, 2012, 48(6):10771087.
[22] Althoff M, Guernic C L, Krogh B H. Reachable set computation for uncertain time-varying linear systems[C]// ACM International Conference on Hybrid Systems: Computation and Control, Chicago, 2011:93102.
[23] Frehse G. PHAVer: Algorithmic verification of hybrid systems past HyTech[J]. International Journal on Software Tools for Technology Transfer, 2008,10(3):263279.
[24] Blanchini F, Miani S. Set-Theoretic Methods in Control[M]. Boston: Birkhäuser Boston, 2008.
[1] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed