Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (3): 47-55    DOI: 10.13306/j.1672-3813.2018.03.006
  本期目录 | 过刊浏览 | 高级检索 |
加权网络的体积维数
黄毅, 张胜, 戴维凯, 王硕, 杨芳
南昌航空大学信息工程学院,南昌 330063
The Volume Dimension of Weighted Networks
HUANG Yi, ZHANG Sheng, DAI Weikai, WANG Shuo, YANG Fang
School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(1592 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 分形维数是度量复杂网络分形特性的最重要的一个指标,其中体积维数被广泛应用于度量无权网络的分形特性。沿着无权网络体积维数的思想进一步考虑,以在给定盒子长度下覆盖到的节点强度和来定义加权网络体积维中“体积”的概念,提出了基于节点强度的加权网络体积维数,并称这种度量加权网络分形特性的维数为强度体积维。首先,利用强度体积维分析了两类具有规则分形结构的谢尔宾斯基(Sierpinski)加权分形网络和康托三角尘(Cantor Dust)加权分形网络,结果表明强度体积维数的值与理论计算的维数值具有非常小的误差。然后,利用强度体积维分析了3个实际加权网络的分形特性,并将结果与利用盒维数得到的结果进行比较,结果表明强度体积维也能够较好地度量实际加权网络的分形特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄毅
张胜
戴维凯
王硕
杨芳
关键词 加权网络分形体积维数盒子覆盖法    
Abstract:The fractal property is considered as the third fundamental topology features of complex networks. The fractal dimension is the most important measure to characterize the fractal property of complex networks, and the volume dimension is widely used to investigate the fractal property of unweighted networks. In this paper, motivated by the idea of volume dimension of unweighted networks, a new volume dimension measure based on the node strength of weighted networks is proposed. We first apply the proposed method to study the fractal property of two families of weighted fractal networks with regular fractal structures:“Sierpinski” weighted fractal networks and “Cantor dust” weighted fractal networks. The result shows that the numerical fractal dimensions obtained by our method are very close to the theoretical similarity dimension of the network. Then, we use the proposed method to study the fractal property of three more representative real-world weighted networks and the results demonstrate that the proposed method is also effective for the fractal scaling analysis of real-world weighted complex networks.
Key wordsweighted networks    fractal    volume dimension    box-covering method
收稿日期: 2018-06-25      出版日期: 2019-01-31
ZTFLH:  N94  
基金资助:国家自然科学基金(61661037,61162002);江西省自然科学基金(20151BAB207038);江西省教育厅基金(GJJ170575);江西省南昌航空大学研究生创新专项资金(YC2017023)
作者简介: 黄毅(1993-),男,江西赣州人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
黄毅, 张胜, 戴维凯, 王硕, 杨芳. 加权网络的体积维数[J]. 复杂系统与复杂性科学, 2018, 15(3): 47-55.
HUANG Yi, ZHANG Sheng, DAI Weikai, WANG Shuo, YANG Fang. The Volume Dimension of Weighted Networks. Complex Systems and Complexity Science, 2018, 15(3): 47-55.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.03.006      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I3/47
[1]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature,1998,393 (6684):440-442.
[2]Barabasi A L, Albert L. Emergence of scaling in random networks [J]. Science,1999, 286(5439):509-512.
[3]Song C M, Havlin S, Makse H A. Self-similarity of complex networks [J]. Nature,2005,433 (7024):392-395.
[4]Wang X Y, Liu Z Z, Wang M G. The correlation fractal dimension of complex networks [J]. International Journal of Modern Physics C,2013,24 (5):1350033.
[5]Lacasa L, Gomez-Gardenes J .Correlation dimension of complex networks [J]. Physical Review Letters,2013,110(16): 168703.
[6]Wei D J, Wei B, Hu Y, et al. A new information dimension of complex networks [J]. Physics Letters A,2014,378 (16): 1091-1094.
[7]王江涛,杨建梅.复杂网络的分形研究方法综述[J].复杂系统与复杂性科学,2013,10(4):1-7.
Wang Jiangtao, Yang Jianmei. The review on fractal research of complex network [J]. Complex Systems and Complexity Science, 2013, 10(4):1-7.
[8]Song C M, Gallos L K, Havlin S, et al. How to calculate the fractal dimension of a complex network: the box covering algorithm [J]. Journal of Statistical Mechanics: Theory and Experiment,2007,(3): 03006.
[9]Schneider C M, Kesselring T A, Andrade Jr J S. et al. Box-covering algorithm for fractal dimension of complex networks [J].Physical Review E,2012,86(2):016707.
[10] Sun Y Y, Zhao Y J. Overlapping-box-covering method for the fractal dimension of complex networks [J].Physical Review E,2014,89(4): 042809.
[11] Zhang H X, Wei D J, Hu Y, et al. Modeling the self-similarity in complex networks based on Coulomb’s law [J]. Communications in Nonlinear Science & Numerical Simulation,2016,35:97-104.
[12] Wu H R, Kuang L, Wang F, et al. A multiobjective box-covering algorithm for fractal modularity on complex networks [J], Applied Soft Computing, 2017,61:294-313.
[13] Wei D J, Liu Q, Zhang H X, et al. Box-covering algorithm for fractal dimension of weighted networks [J]. Scientific Reports,2013,3(6157):3049.
[14] Shanker O. Defining dimension of a complex network [J]. Modern Physics Letters B,2007,21(6): 321-326.
[15] Shanker O. Graph zeta function and dimension of complex networks [J]. Modern Physics Letters B,2007,21(11):639-644.
[16] Guo L, Cai X. The fractal dimensions of complex networks[J].Chinese Physics Letters,2009,26(8):088901.
[17] Wei D J, Wei B, Zhang H X, et al. A generalized volume dimension of complex networks [J]. Journal of Statistical Mechanics: Theory and Experiment,2014,2014(10):P10039.
[18] 姚尊强,尚可可,许小可.加权网络的常用统计量[J].上海理工大学学报, 2012,34(1):18-25.
Yao Zunqiang, Shang Keke, Xu Xiaoke. Fundamental statistics of weighted networks [J]. Journal of University of Shanghai for Science and Technology, 2012, 34(1):18-25.
[19] Barrat A, Barthelemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(11):3747-3752.
[20] Barrat A, Barthelemy M, Vespignani A. Modeling the evolution of weighted networks [J]. Physical Review E, 2004, 70(6):1-13.
[21] Carletti T, Righi S. Weighted fractal networks [J]. Physica A,2010,389(10): 2134-2142.
[22] 张济忠.分形[M],北京:清华大学出版社,1995.
[23] Newman M E J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [J]. Physical Review E,2001,64(1):016132.
[1] 吴栩, 燕汝贞, 王雪飞, 李佳. 基于分形统计测度的投资组合研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 75-.
[2] 黄毅, 张胜, 戴维凯, 王硕, 杨芳. 基于信息维数的加权网络分形特性分析[J]. 复杂系统与复杂性科学, 2018, 15(2): 26-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed