Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (3): 66-74    DOI: 10.13306/j.1672-3813.2018.03.008
  本期目录 | 过刊浏览 | 高级检索 |
考虑拖期风险的第四方物流路径优化问题模型与求解
薄桂华1, 黄敏2
1.辽宁石油化工大学 a.信息与控制工程学院 b.石油化工过程控制国家级实验教学示范中心,辽宁 抚顺 113001;
3.东北大学信息科学与工程学院流程工业综合自动化国家重点实验室,沈阳 110819
Model and Solution of Routing Optimization Problem in the Fourth Party Logistics with Tardiness Risk
BO Guihua1, HUANG Min2
1.a.School of Information and Control Engineering b.National Experimental Teaching Demonstration Center of Petrochemical Process Control, Liaoning Shihua University, Fushun 113001, China;
2.College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
全文: PDF(1129 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对实际复杂物流配送过程中,由于天气条件的变化、路况的变化等不可测因素导致按时完成配送任务存在着风险,从而为企业带来损失的实际情况,本文对带有拖期风险的第四方物流路径优化问题展开研究。通过引入在险值(Value-at-Risk,VaR)来度量时间风险,建立以最小化拖期风险为优化目标、物流配送费用为约束的数学模型。针对问题的非线性和NP-Hard特点设计嵌入删除算法的和声搜索算法,通过对不同规模的实例进行求解,验证了模型和算法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薄桂华
黄敏
关键词 第四方物流路径优化拖期风险在险值    
Abstract:As to the practical complex logistics distribution situation that the distribution task cannot be completed in time, which brings tardiness risk and loss for company, the routing optimization problem in the fourth party logistics with consideration of tardiness risk is studied. A mathematical model minimizing tardiness risk and taking the distribution costs as constraint is set up, using Value-at-Risk to measure time risk. A deletion algorithm embedded harmony search is proposed considering nonlinear and NP-Hard characteristic of the problem. The effectiveness of model and algorithm is verified through solving the different scales of cases.
Key wordsthe fourth party Logistics    routing optimization    tardiness risk    value-at-risk
收稿日期: 2018-03-23      出版日期: 2019-01-31
ZTFLH:  TP29  
基金资助:国家杰出青年科学基金资助项目(71325002);国家自然科学基金重点国际合作研究项目(71620107003);国家自然科学基金创新研究群体项目(61621004);流程工业综合自动化国家重点实验室基础科研业务费资助(2013ZCX11);辽宁省教育厅科学研究一般项目(L2016024)
作者简介: 薄桂华(1984-),女,辽宁凌源人,博士,讲师,主要研究方向为第四方物流路径优化、智能优化。
引用本文:   
薄桂华, 黄敏. 考虑拖期风险的第四方物流路径优化问题模型与求解[J]. 复杂系统与复杂性科学, 2018, 15(3): 66-74.
BO Guihua, HUANG Min. Model and Solution of Routing Optimization Problem in the Fourth Party Logistics with Tardiness Risk. Complex Systems and Complexity Science, 2018, 15(3): 66-74.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.03.008      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I3/66
[1]Liu Q, Zhang C, Zhu K, et al. Novel multi-objective resource allocation and activity scheduling for fourth party logistics[J]. Computers and Operations Research, 2014, 44: 42-51.
[2]Subramanian N, Gunasekaran A, Papadopoulos T, et al.4th party logistics service providers and industrial cluster competitiveness: Collaborative operational capabilities framework [J]. Industrial Management & Data Systems, 2016, 116(7):1303-1330.
[3]Xu N. Improved weighted shapley value model for the fourth party logistics supply chain coalition[J]. Journal of Control Science & Engineering, 2013(10): 1-5.
[4]Li J, Liu Y, Zhang Y, et al. Robust optimization of fourth party logistics network design under disruptions[J]. Discrete Dynamics in Nature & Society, 2015: 1-7.
[5]李锐, 黄敏, 王兴伟. 多周期的第四方物流弹复性正逆向集成网络设计模型与算法[J]. 系统工程理论与实践, 2015, 35(4): 892-903.
Li R, Huang M, Wang X W. Model and algorithm for multi-period resilient integrated forward/reverse network design of fourth-party logistics [J]. Systems Engineering-Theory & Practice, 2015, 35(4): 892-903.
[6]Tao Y, Chew E P, Lee L H, et al. A column generation approach for the route planning problem in fourth party logistics [J]. Journal of the Operational Research Society, 2017,68:165-181.
[7]Chen J, Wang S, Li X, et al. Directed graph optimization model and its solving method based on genetic algorithm in fourth party logistics[C]∥Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics. N Y, USA: IEEE, 2003: 1961-1966.
[8]Huang M, Tong W, Wang Q, et al. Immune algorithm based routing optimization in fourth-party logistics[C]∥Proceedings of 2006 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006: 3029-3034.
[9]Huang M, Bo G, Tong W, et al. A hybrid immune algorithm for solving fourth-party logistics routing optimizing problem [C]∥Proceedings of 2008 IEEE Congress on Evolutionary Computation. Hong Kong SAR, China: IEEE, 2008: 286-291.
[10] Bo G, Huang M, Ip W H, et al. The harmony search for the routing optimization in fourth party logistics with time windows [C]∥Proceedings of 2009 IEEE Congress on Evolutionary Computation. Trondheim. Norway: IEEE, 2009: 962-967.
[11] Huang M, Bo G, Wang X W, et al. The optimization of routing in fourth-party logistics with soft time windows using harmony search [C]∥Proceedings of the Sixth International Conference on Natural Computation. Yantai, China: IEEE, 2010: 4344-4348.
[12] 黄敏, 崔妍, 林婉婷, 等. 带有费用折扣的多任务第4方物流路径问题[J]. 控制与决策, 2013, 28(7): 997-1001.
Huang M, Cui Y, Lin W, et al. Multi-task fourth party logistics routing problem with cost discount [J]. Control and Decision, 2013, 28(7): 997-1001.
[13] Cui Y, Huang M, Yang S, et al. Fourth party logistics routing problem model with fuzzy duration time and cost discount[J]. Knowledge-Based Systems, 2013,50: 14-24.
[14] Huang M, Cui Y, Yang S, et al. Fourth party logistics routing problem with fuzzy duration time[J]. International Journal of Production Economics, 2013, 145: 107-116.
[15] Huang M, Ren L, Lee L H, et al. Model and algorithm for 4PLRP with uncertain delivery time [J]. Information Sciences,2016,330:211-225.
[16] Huang M, Ren L, Lee L H, et al. 4PL routing optimization under emergency conditions [J]. Knowledge-Based Systems, 2015, 89:126-133.
[17] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J].The Journal of Risk, 2000, 2(3): 21-41.
[18] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking and Finance, 2002, 26(7): 1443-1471.
[19] Geem Z W, Kim J H, Loganathan G V. Harmony search [J]. Simulation, 2001, 76(2):60-68.
[20] Azevedo J A, Costa M E O S, Madeira J J E R S, et al. An algorithm for the ranking of shortest paths [J]. European Journal of Operational Research, 1993, 69(1): 97-106.
[21] 汪定伟, 王俊伟, 王洪峰, 等.智能优化方法[M]. 1版.北京:高等教育出版社, 2007.
[22] Chen X, Hu J, Hu X. A new model for path planning with interval data [J]. Computers & Operations Research, 2009, 36(6): 1893-189.
[1] 任亮, 黄敏, 王洪峰, 王兴伟. 第四方物流多目标路径集成优化[J]. 复杂系统与复杂性科学, 2018, 15(1): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed