Improved HOSVD Recommendation Algorithm Taking into Account User’s Emotions
GUO Qiang1,YUE Qiang1,LI Rende1,LIU Jianguo2
1.Complex Systems Science Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China; 2.Institute of Financial Technology Laboratory, Shanghai University of Finance and Economics, Shanghai 200433, China
Abstract:Traditional 3rd order Singular Value Decomposition (HOSVD) recommendation algorithm is based on mining the potential relationship among users, item labels and items. However, this method does not take the user's emotions into account. Based on the preference of user emotions extracted from the emoji expressions in the comments, this paper proposes a HOSVD recommendation algorithm that introduces the user's emotional preferences. This method classifies emoji expressions, weights them, and calculates the weighted sum of the emoji expressions of different types to represent the user's emotions. 3rd order tensor model is introduced to store three tuple data of user, user emotion and item, and HOSVD decomposition is applied personalized recommendations. In this paper, a numerical experiment is conducted on an empirical dataset of online Internet education. The results show that this method improves the accuracy and recall performance indexes better than the collaborative filtering algorithm based on items, PersonalRank algorithm and HOSVD algorithm based on user-tag-item triple information. When Top-1 recommendation is made, the accuracy and recall rate can reach 0.353 and 0.281. The work of this paper provides a reference for the personalized recommendation of mobile.
[1]刘建国, 周涛, 郭强,等.个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009, 6(3): 110. Liu Jianguo, Zhou Tao, Guo Qiang, et al. Overview of the evaluated algorithms for the personal recommendation systems[J]. Complex Systems and Complexity Science, 2009, 6(3): 110. [2]Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]∥ ACM Conference on Computer Supported Cooperative Work. New York,USA: ACM, 1994: 175186. [3]朱国玮, 周利. 基于遗忘函数和领域最近邻的混合推荐研究[J]. 管理科学学报, 2012, 15(5): 5564. Zhu Guowei, Zhou Li. Hybrid recommendation based on forgetting curve and domain nearest neighbor[J]. Journal of Management Sciences in China, 2012, 15(5): 5564. [4]仲秋雁, 张媛, 李晨,等. 考虑用户兴趣和能力的众包任务推荐方法[J]. 系统工程理论与实践, 2017, 37(12): 32703280. Zhou Qiuyan, Zhang Yuan, Li Chen, et al. Task recommendation method based on workers' interest and competency for crowdsourcing[J]. Systems Engineering-Theory & Practice, 2017, 37(12): 32703280. [5]刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1): 115. Liu Jianguo, Zhou Tao,Wang Binghong. Research progress of personalized recommendation system[J]. Progress in Natural Science, 2009, 19(1): 115. [6]邓晓懿, 金淳, 韩庆平,等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11): 29452953. Deng Xiaoyi, Jin Chun, Han Qingping, et al. Improved collaborative filtering model based on context clustering and user ranking[J]. System Engineering Theory and Practice, 2013, 33(11):29452953. [7]Mooney R J, Bennett P N, Roy L. Book recommending using text categorization with extracted information[C]∥Proc Recommender Systems Papers from 1998 Workshop, Technical Report WS9808. Menlo Park, 1998. [8]Chang Y I, Shen J H, Chen T I. A data mining-based method for the incremental update of supporting personalized information filtering[J]. Journal of Information Science & Engineering, 2008, 24(1): 129142. [9]Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4): 046115. [10]Sarwar B M, Karypis G, Konstan J A, et al. Application of cimensionality reduction in recommender system—a case study[C]∥ ACM Webkdd Workshop. New York, 2000. [11]Heymann P, Koutrika G, Garcia-Molina H. Can social bookmarking improve web search?[C]∥Proceedings of the 2008 International Conference on Web Search and Data Mining. Palo Alto, California, USA: ACM, 2008: 195206. [12]Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction[C]∥Proceedings of the 2008 ACM conference on Recommender systems. Lausanne, Switzerland, ACM, 2008: 4350. [13]Symeonidis P. ClustHOSVD: item recommendation by combining semantically enhanced tag clustering with tensor HOSVD[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 46(9): 12401251. [14]赵屹星垚. Emoji表情中的受众心理研究[J]. 设计艺术研究, 2016, 6(1): 4649. Zhao Yixingyao. Study of receiver psychology of emoji icon[J]. Design Research, 2016, 6(1): 4649. [15]Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification[C]∥Conference on Empirical Methods in Natural Language Processing. Lisbon, 2015: 14221432. [16]董晶晶. 基于符号互动理论的社交媒体表情符号使用分析[J]. 新媒体研究, 2016(3):67. Dong Jingjing, Analysis on the use of emotional symbols in social media based on symbolic interaction theory[J]. New Media Research, 2016(3):67. [17]Novak P K, Smailovic'J, Sluban B, et al. Sentiment of emojis[J]. PloS one, 2015, 10(12): e0144296. [18]Vidal L, Ares G, Jaeger S R. Use of emoticon and emoji in tweets for food-related emotional expression[J]. Food Quality & Preference, 2015, 49: 119128. [19]Luangrath A W, Peck J, Barger V A. Textual paralanguage and its implications for marketing communications[J]. Journal of Consumer Psychology, 2017, 27(1): 98107. [20]Sugiyama S. Kawaii meiru and Maroyaka neko: Mobile emoji for relationship maintenance and aesthetic expressions among Japanese teens[J]. First Monday, 2015, 20(10): 139149. [21]LjubeiŠc'N, FiŠer D. A Global Analysis of Emoji Usage[C]∥Web As Corpus Workshop. Humboldt University, Berlin, 2016:8289. [22]Jschke R, Marinho L, Hotho A, et al. Tag recommendations in folksonomies[J]. Lecture Notes in Computer Science, 2007, 4702: 506514. [23]Batagelj V, ZaverŠnik M. Generalized cores[DB/OL].[2018-03-08]. http:∥arXiv.org/abs/cs/0202039. [24]Krippendorff K. Agreement and information in the reliability of coding[J]. Communication Methods and Measures, 2011, 5(2): 93112. [25]项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.