Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 1-9    DOI: 10.13306/j.1672-3813.2018.04.001
  本期目录 | 过刊浏览 | 高级检索 |
入用户情感的高阶奇异值分解推荐算法研究
郭强1, 岳强1, 李仁德1, 刘建国2
1.上海理工大学复杂系统科学研究中心,上海 200093;
2.上海财经大学金融科技研究院,上海 200433
Improved HOSVD Recommendation Algorithm Taking into Account User’s Emotions
GUO Qiang1,YUE Qiang1,LI Rende1,LIU Jianguo2
1.Complex Systems Science Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China;
2.Institute of Financial Technology Laboratory, Shanghai University of Finance and Economics, Shanghai 200433, China
全文: PDF(1533 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的三阶奇异值分解推荐算法(HOSVD)通过挖掘用户、物品标签和物品三者之间的潜在关系进行推荐,然而该方法并没有将用户的情感考虑进来。基于从评论中emoji表情提炼出的用户情感偏好,提出了一种引入用户情感的HOSVD推荐算法。该方法将emoji表情分成积极、中立和消极三类,分别给每类情感赋予不同的权重,之后计算不同类emoji表情数量的加权和来表征用户的情感;再引入三阶张量模型,应用HOSVD分解进行个性化推荐。在某在线互联网教育的实证数据集上的实验结果表明,该方法比基于物品的协同过滤算法、PersonalRank算法和采用用户社刊分类社刊三元组信息的HOSVD算法在准确率和召回率性能指标上都有明显提升,其中进行Top1推荐时,准确率和召回率可以达到0.353和0.281。这为移动通信端的个性化推荐提供了借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭强
岳强
李仁德
刘建国
关键词 推荐算法HOSVD分解用户情感emoji表情    
Abstract:Traditional 3rd order Singular Value Decomposition (HOSVD) recommendation algorithm is based on mining the potential relationship among users, item labels and items. However, this method does not take the user's emotions into account. Based on the preference of user emotions extracted from the emoji expressions in the comments, this paper proposes a HOSVD recommendation algorithm that introduces the user's emotional preferences. This method classifies emoji expressions, weights them, and calculates the weighted sum of the emoji expressions of different types to represent the user's emotions. 3rd order tensor model is introduced to store three tuple data of user, user emotion and item, and HOSVD decomposition is applied personalized recommendations. In this paper, a numerical experiment is conducted on an empirical dataset of online Internet education. The results show that this method improves the accuracy and recall performance indexes better than the collaborative filtering algorithm based on items, PersonalRank algorithm and HOSVD algorithm based on user-tag-item triple information. When Top-1 recommendation is made, the accuracy and recall rate can reach 0.353 and 0.281. The work of this paper provides a reference for the personalized recommendation of mobile.
Key wordsrecommendation algorithms    HOSVD decomposition    user emotions    emoji
     出版日期: 2019-05-16
ZTFLH:  N949  
基金资助:国家自然科学基金(71771152)
通讯作者: 刘建国(1979),男,山西临汾人,博士研究生,教授,主要研究方向为复杂网络、个性化推荐、知识管理、在下社会网络分析、知识图谱分析。   
作者简介: 郭强(1975),女,辽宁大连人,博士研究生,教授,主要研究方向为复杂网络、数据挖掘、科学知识图谱分析。
引用本文:   
郭强, 岳强, 李仁德, 刘建国. 入用户情感的高阶奇异值分解推荐算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 1-9.
GUO Qiang,YUE Qiang,LI Rende,LIU Jianguo. Improved HOSVD Recommendation Algorithm Taking into Account User’s Emotions. Complex Systems and Complexity Science, 2018, 15(4): 1-9.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.001      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/1
[1]刘建国, 周涛, 郭强,等.个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009, 6(3): 110.
Liu Jianguo, Zhou Tao, Guo Qiang, et al. Overview of the evaluated algorithms for the personal recommendation systems[J]. Complex Systems and Complexity Science, 2009, 6(3): 110.
[2]Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]∥ ACM Conference on Computer Supported Cooperative Work. New York,USA: ACM, 1994: 175186.
[3]朱国玮, 周利. 基于遗忘函数和领域最近邻的混合推荐研究[J]. 管理科学学报, 2012, 15(5): 5564.
Zhu Guowei, Zhou Li. Hybrid recommendation based on forgetting curve and domain nearest neighbor[J]. Journal of Management Sciences in China, 2012, 15(5): 5564.
[4]仲秋雁, 张媛, 李晨,等. 考虑用户兴趣和能力的众包任务推荐方法[J]. 系统工程理论与实践, 2017, 37(12): 32703280.
Zhou Qiuyan, Zhang Yuan, Li Chen, et al. Task recommendation method based on workers' interest and competency for crowdsourcing[J]. Systems Engineering-Theory & Practice, 2017, 37(12): 32703280.
[5]刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1): 115.
Liu Jianguo, Zhou Tao,Wang Binghong. Research progress of personalized recommendation system[J]. Progress in Natural Science, 2009, 19(1): 115.
[6]邓晓懿, 金淳, 韩庆平,等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11): 29452953.
Deng Xiaoyi, Jin Chun, Han Qingping, et al. Improved collaborative filtering model based on context clustering and user ranking[J]. System Engineering Theory and Practice, 2013, 33(11):29452953.
[7]Mooney R J, Bennett P N, Roy L. Book recommending using text categorization with extracted information[C]∥Proc Recommender Systems Papers from 1998 Workshop, Technical Report WS9808. Menlo Park, 1998.
[8]Chang Y I, Shen J H, Chen T I. A data mining-based method for the incremental update of supporting personalized information filtering[J]. Journal of Information Science & Engineering, 2008, 24(1): 129142.
[9]Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4): 046115.
[10]Sarwar B M, Karypis G, Konstan J A, et al. Application of cimensionality reduction in recommender system—a case study[C]∥ ACM Webkdd Workshop. New York, 2000.
[11]Heymann P, Koutrika G, Garcia-Molina H. Can social bookmarking improve web search?[C]∥Proceedings of the 2008 International Conference on Web Search and Data Mining. Palo Alto, California, USA: ACM, 2008: 195206.
[12]Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction[C]∥Proceedings of the 2008 ACM conference on Recommender systems. Lausanne, Switzerland, ACM, 2008: 4350.
[13]Symeonidis P. ClustHOSVD: item recommendation by combining semantically enhanced tag clustering with tensor HOSVD[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 46(9): 12401251.
[14]赵屹星垚. Emoji表情中的受众心理研究[J]. 设计艺术研究, 2016, 6(1): 4649.
Zhao Yixingyao. Study of receiver psychology of emoji icon[J]. Design Research, 2016, 6(1): 4649.
[15]Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification[C]∥Conference on Empirical Methods in Natural Language Processing. Lisbon, 2015: 14221432.
[16]董晶晶. 基于符号互动理论的社交媒体表情符号使用分析[J]. 新媒体研究, 2016(3):67.
Dong Jingjing, Analysis on the use of emotional symbols in social media based on symbolic interaction theory[J]. New Media Research, 2016(3):67.
[17]Novak P K, Smailovic'J, Sluban B, et al. Sentiment of emojis[J]. PloS one, 2015, 10(12): e0144296.
[18]Vidal L, Ares G, Jaeger S R. Use of emoticon and emoji in tweets for food-related emotional expression[J]. Food Quality & Preference, 2015, 49: 119128.
[19]Luangrath A W, Peck J, Barger V A. Textual paralanguage and its implications for marketing communications[J]. Journal of Consumer Psychology, 2017, 27(1): 98107.
[20]Sugiyama S. Kawaii meiru and Maroyaka neko: Mobile emoji for relationship maintenance and aesthetic expressions among Japanese teens[J]. First Monday, 2015, 20(10): 139149.
[21]LjubeiŠc'N, FiŠer D. A Global Analysis of Emoji Usage[C]∥Web As Corpus Workshop. Humboldt University, Berlin, 2016:8289.
[22]Jschke R, Marinho L, Hotho A, et al. Tag recommendations in folksonomies[J]. Lecture Notes in Computer Science, 2007, 4702: 506514.
[23]Batagelj V, ZaverŠnik M. Generalized cores[DB/OL].[2018-03-08]. http:∥arXiv.org/abs/cs/0202039.
[24]Krippendorff K. Agreement and information in the reliability of coding[J]. Communication Methods and Measures, 2011, 5(2): 93112.
[25]项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.
[1] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[2] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[3] 贾承丰, 韩华, 完颜娟, 吕亚楠. 基于网络模体特征攻击的网络抗毁性研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 43-50.
[4] 胡枫, 刘猛, 赵静, 雷蕾. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38.
[5] 刘晓露, 贾书伟, 王建民. 基于Skyline Query的高声誉用户识别方法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 62-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed