Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (2): 9-18    DOI: 10.13306/j.1672-3813.2019.02.002
  本期目录 | 过刊浏览 | 高级检索 |
蜂群激发抑制算法及其在交通信号配时中的应用
胡亮1, 肖人彬1, 王英聪2
1.华中科技大学人工智能与自动化学院,武汉 430074;
2.郑州轻工业大学电气信息工程学院,郑州 450002
Bee Colony Activating-Inhibition Algorithm and Its Application in Traffic Signal Timing
HU Liang1, XIAO Renbin1,WANG Yingcong2
1.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
2.School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
全文: PDF(1662 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 现实生活中存在各种各样的动态分配问题,群智能劳动分工由于模拟的是生物群体之间的协作分工,所以在解决这类动态分配问题有着天然的优势。目前对群智能劳动分工的研究主要集中在蚁群的刺激响应原理,而忽略了蜂群的激发抑制原理。与刺激响应原理的个体环境交互方式不同,激发抑制原理采用的是个体个体交互方式。针对蜂群劳动分工现象,提出一种激发抑制劳动分工模型(AILD)。为了验证AILD模型的有效性,选取了一个典型的时间分配问题——交通信号配时,设计了相应的激发抑制劳动分工信号配时算法AILD-ST。采用AILD-ST算法对实际案例进行了交通信号配时求解,并与Webster算法、蚁群算法和蜂群算法进行了对比,通过对比实验和分析讨论,结果显示出本文算法的有效性
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡亮
肖人彬
王英聪
关键词 群智能劳动分工激发抑制原理交通信号配时    
Abstract:There are various dynamic allocation problems in real life. However, the swarm intelligence division of labor has a natural advantage in solving such dynamic allocation problems because it simulates the division of labor between biological groups.At present, most studies on division of labor with swarm intelligence focus on the stimulation-response principle of ant colonies, while ignores the principle of activating and inhibition of bee colonies. Different from the individual environment interaction mode of the stimulation-response principle, the principle of activating and inhibition adopts interaction mode among individuals. Aiming at the phenomenon of labor division of bee colonies, this paper proposes an activating and inhibition labor division model (AILD). In order to verify the validity of the AILD model, traffic signal timing,a typical time allocation problem,is selected and the corresponding activating and inhibition labor division signal timing algorithm (AILD-ST) based on the evolutionary solution is proposed. This paper uses the real traffic flow data to implement simulation experiment based on AILD-ST algorithm. Compared with Webster algorithm, ant colony algorithm and bee colony algorithm, the results show that the proposed algorithm is of good quality and high calculation efficiency
Key wordsswarm intelligence    labor division    activating and inhibition    traffic signal timing
收稿日期: 2019-03-04      出版日期: 2019-08-19
ZTFLH:  TP391.9  
基金资助:国家自然科学基金(51875220,61702463)
通讯作者: 肖人彬(965),男,湖北武汉人,博士,教授,主要研究方向为群智能、涌现计算、复杂系统建模与仿真   
作者简介: 胡亮(1994),男,湖北咸宁人,硕士研究生,主要研究方向为人工智能、群智能
引用本文:   
胡亮, 肖人彬, 王英聪. 蜂群激发抑制算法及其在交通信号配时中的应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 9-18.
HU Liang, XIAO Renbin,WANG Yingcong. Bee Colony Activating-Inhibition Algorithm and Its Application in Traffic Signal Timing. Complex Systems and Complexity Science, 2019, 16(2): 9-18.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.02.002      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I2/9
[1] Kennedy J, Eberhart R C, Shi Y H. Swarm Intelligence[M]. San Francisco: Morgan Kaufmann Publishers, 2001:30-85.
[2] 肖人彬,陶振武.群集智能研究进展[J].管理科学学报,2007,10( 3) : 80 -96.Xiao Renbin, Tao Zhenwu. Research progress of swarm intelligence[J]. Journal of Management Sciences in China, 2007, 10(3): 80-96.
[3] Xiao R B, Wang Y C. Labour division in swarm intelligence for allocation problems: a survey[J]. International Journal of Bio-inspired Computation, 2018, 12(2): 71-86.
[4] Johnson B R. Division of labor in honeybees: form, function, and proximate mechanisms[J]. Behavioral ecology and sociobiology, 2010, 64(3): 305-316.
[5] Duarte A, Weissing F J, Pen I, et al. An evolutionary perspective on self-organized division of labor in social insects[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1): 91-110.
[6] Bonabeau E, Theraulaz G, Deneubourg J L. Fixed response thresholds and the regulation of division of labor in insect societies[J]. Bulletin of Mathematical Biology, 1998, 60(4):753-807.
[7] Xiao R B, Yu T Y, Gong X G. Modeling and simulation of ant colony’s labor division with constraints for task allocation of resilient supply chains[J]. International Journal on Artificial Intelligence Tools, 2012, 21(3): 1240014-1 - 1240014-19.
[8] Wu H S, Li H, Xiao R B, et al. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm[J].Physica A, 2018, 491: 127-141.
[9] Zahadat P, Hahshold S, Thenius R, et al. From honeybees to robots and back: division of labour based on partitioning social inhibition [J]. Bioinspiration & Biomimetics, 2015, 10(6): 066005-1 - 066005-17.
[10] Zahadat P, Schmickl T. Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition [J]. Adaptive Behavior, 2016, 24(2): 87-101.
[11] De Lope J, Maravall D, Quinonez Y. Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems[J]. Robotics and Autonomous Systems, 2013, 61(7): 714-720.
[12] 阎静, 曾建潮, 张国有. 基于劳动分工的群机器人地图创建探索策略研究[J]. 计算机应用研究, 2013, 30(1): 94-98.Yan Jing, Zeng Jianchao, Zhang Guoyou. Research on exploration strategy in map building of swarm robotics based on model of division of labor[J]. Application Research of Computers, 2013,30(1):94-98.
[13] Robinson G E. Regulation of labor division in insect societies[J]. Annual Review of Entomology, 1992, 37(1): 637-665.
[14] Trumbo S T, Huang Z Y, Robinson G E. Division of labor between undertaker specialists and other middle-aged workers in honey bee colonies[J]. Behavioral Ecology and Sociobiology, 1997, 41(3):151-163.
[15] Huang Z Y, Robinson G E. Regulation of honey bee labor division by colony age demography[J]. Behavioral Ecology and Sociobiology, 1996, 39(3): 147-158.
[16] Huang Z Y, Robinson G E. Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(24): 11726-11729.
[17] Naug D, Gadagkar R. Flexible labor division mediated by social interactions in an insect colony—a simulation model[J]. Journal of Theoretical Biology, 1999, 197(1): 123-133.
[18] Gierer A, Meinhardt H. A theory of biological pattern formation[J]. Kybernetik, 1972, 12(1): 30-39.
[19] Jones J C, Helliwell P, Beekman M, et al. The effects of rearing temperatur e on developmental stability and learning and memory in the honey bee, Apis mellifera[J]. Journal of Comparative Physiology A, 2005, 191(12): 1121-1129.
[20] Becher M A, Scharpenberg H, Moritz R F. A. Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.)[J]. Journal of Comparative Physiology A, 2009, 195(7): 673-679.
[21] 杨佩昆, 吴兵. 交通管理与控制[M].北京:人民交通出版社, 2004:74-178.
[22] 刘爽, 岳芳, 郭彦东, 等.基于模式搜索算法的交叉口信号配时优化研究[J].交通运输系统工程与信息, 2011, 11(1): 29-35.Liu Shuang, Yue Fang, Guo Yandong, et al. Optimization research on signal timing for urban intersections based on pattern search algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(1): 29-35.
[23] 杨文臣, 张轮, 饶倩, 等. 基于黄金分割点遗传算法的交通信号多目标优化[J]. 交通运输系统工程与信息, 2013, 13(5): 48-55.Yang Wenchen, Zhang Lun, Rao Qian. Multi-objective optimization for traffic signals with golden ratio based genetic algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(5): 48-55.
[24] 陈小红, 钱大琳, 秦雪梅, 等. 基于互补问题的混合交通信号配时优化模型[J].系统工程理论与实践, 2010, 30(1): 184-191.Chen Xiaohong, Qian Dalin, Qin Xuemei, et al. Complementarity problems-based optimization model for the signal timing under mixed traffic conditions[J]. Systems Engineering-Theory & Practice, 2010, 30(1): 184-191.
[25] 王秋平, 谭学龙, 张生瑞. 城市单点交叉口信号配时优化[J].交通运输工程学报, 2006, 6(2): 60-64.Wang Qiuping, Tan Xuelong, Zhang Ruisheng. Signal timing optimization of urban single-point intersections[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 60-64.
[1] 刘琪, 肖人彬. 观点动力学视角下基于意见领袖的网络舆情反转研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 1-13.
[2] 蒲玮, 李雄. 基于能力组件的作战仿真Agent模块化结构设计[J]. 复杂系统与复杂性科学, 2017, 14(3): 45-57.
[3] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed