Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 60-70    DOI: 10.13306/j.1672-3813.2019.03.006
  本期目录 | 过刊浏览 | 高级检索 |
不同类型复杂网络中个体合作行为互动的演化博弈模拟
章平, 黄傲霜, 罗宏维
深圳大学中国经济特区研究中心,广东 深圳 518060
The Evolutionary Game Simulation of Individual Cooperative Behavior in Different Complex Networks
ZHANG Ping, HUANG Aoshuang, LUO Hongwei
China Center for Special Economic Zones Research,Shenzhen University,Shenzhen 518060, China
全文: PDF(4406 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 运用NetLogo仿真平台,采用ABM方法设计仿真实验,研究了规则格子网络、无标度网络和小世界网络3种典型社会网络拓扑结构下合作的演化,比较何种网络更有利于合作的发生。引入网络规模、初始合作概率、背叛收益、邻居节点选择方式、交互规则等因素,研究上述变量如何影响合作的发生和持续,并比较其不同的演化结果,探讨如何设计有效的激励机制以维持和促进合作。实验发现:规则格子网络和小世界网络的共性更多,而无标度网络更有利于合作的进化。设计激励机制应充分考虑群体的社会网络结构影响,以制定出有效的激励机制,促使合作发生并得以持续。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章平
黄傲霜
罗宏维
关键词 复杂网络合作演化博弈仿真模拟    
Abstract:This paper investigated the evolution of cooperation in three typical social network topologies: regular lattice network, scale-free network and small-world network, using NetLogo simulation platform and ABM method to design simulation experiment. We also studied which network is more conducive to the occurrence of cooperation. By introducing factors such as network scale, initial cooperation probability, betrayal benefit, selection mode of neighbor node, interaction rules and so on, this paper measured how the above variables affect the occurrence and continuity of cooperation. Then we compared the different evolution results and discussed how to design effective incentive mechanism to maintain and to promote cooperation. Experimental results show that regular lattice network and small-world network have more commonality, while scale-free network is more conducive to the evolution of cooperation. In order to develop an effective incentive mechanism to promote the occurrence and continuity of cooperation, the design of incentive mechanism should take full account of the influence of social network structure of groups.
Key wordscomplex network    cooperation    evolutionary game    analogue simulation
收稿日期: 2019-05-08      出版日期: 2019-10-24
ZTFLH:  F106  
基金资助:国家社会科学基金(14BZZ086);深圳市哲学社会科学规划项目(SZ2019C006)
通讯作者: 黄傲霜(1991-),女,安徽砀山人,硕士,主要研究方向为复杂网络演化。   
作者简介: 章平(1981-),男,浙江绍兴人,博士,副教授,主要研究方向为行为博弈与机制设计。
引用本文:   
章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
ZHANG Ping, HUANG Aoshuang, LUO Hongwei. The Evolutionary Game Simulation of Individual Cooperative Behavior in Different Complex Networks. Complex Systems and Complexity Science, 2019, 16(3): 60-70.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.006      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/60
[1]青木昌彦. 比较制度分析[M]. 上海: 上海远东出版社, 2001:23.
[2]Ostrom E. Beyond markets and states: polycentric governance of complex economic systems[J]. American Economic Review, 2010, 100(3):641-672.
[3]周业安.人的社会性与偏好的微观结构[J].学术月刊, 2017, 49(6):59-73.
Zhou Yean. Microstructure of human sociality and preferences[J]. Academic Monthly, 2017, 49(6):59-73.
[4]黄凯南.制度演化经济学的理论发展与建构[J].中国社会科学, 2016, (5):65-78.
Huang Kainan. The theoretical development and construction of institutional evolutionary economics[J]. Social Sciences in China, 2016, (5):65-78.
[5]黄凯南, 乔元波. 产业技术与制度的共同演化分析——基于多主体的学习过程[J]. 经济研究, 2018, 53(12):161-176.
Huang Kainan, Qiao Yuanbo. A joint evolutionary analysis of industrial technology and systems—a multi-subject learning process[J]. Economic Research, 2018, 53(12):161-176.
[6]Guth W, Schmittberger R, Schwarze B. An experimental study of ultimatum bargaining[J]. Journal of Economic Behavior & Organization, 1982, 3(4):367-388.
[7]Forsythe R, Horowitz J L, Savin N E, et al. Fairness in simple bargaining experiments[J]. Games & Economic Behavior, 1994, 6(3):347-369.
[8]Marwell G, Ames R E. Experiments on the provision of public goods: resources, interest,group size and the free rider problem[J]. American Journal of Sociology, 1979, 84(6):1335-1360.
[9]章平,许志成,闫佳.制度如何激发社会合作——基于公共品博弈实验的前沿理论综述[J].经济与管理评论,2015,31(1):26-33.
Zhang Ping, Xu Zhicheng, Yan Jia. How the system inspires social cooperation—a review of frontier theory based on the experiment of public goods game[J]. Economics and Management Review, 2015, 31(1): 26-33.
[10] 罗俊, 汪丁丁, 叶航,等. 走向真实世界的实验经济学——田野实验研究综述[J]. 经济学,2015, (2):853-884.
Luo Jun, Wang Dingding, Ye Hang, et al. Experimental economics towards the real world—a review of field experimental research[J]. Economics, 2015, (2): 853-884.
[11] Akerlof G A, Yellen J L. The fair wage-effort hypothesis and unemployment[J]. Quarterly Journal of Economics, 1990, 105(2):255-283.
[12] Fehr E, Riedl K A. Does fairness Prevent Market Clearing? An Experimental Investigation[J].Quarterly Journal of Economics,1993,108,437-459.
[13] Hossain T, List J A. The behavioralist visits the factory: increasing productivity using simple framing manipulations[J]. Management Science, 2012, 58(12):2151-2167.
[14] Mas A. Pay, reference points, and police performance[J]. Nber Working Papers, 2006, 121(3):783-821.
[15] 张耀峰,耿智琳.虚实互动网络环境下的双群体演化博弈仿真研究[J].计算机应用研究,2017, 34(6): 1699-1703.
Zhang Yaofeng, Geng Zhilin. Double-group evolutionary game simulation research in the environment of virtual interactive networks[J]. Computer Application Research, 2017, 34(6): 1699-1703.
[16] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
Tan Shaolin, Lü Jinhu. Evolutionary game dynamics on complex networks—an overview of a computational perspective. [J]. Complex Systems and Complexity Science, 2017, 14(4): 1-13.
[17] 李杰, 张睿, 徐勇. 虚假口碑信息控制演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 39-46.
Li Jie, Zhang Rui, Xu Yong. The study of the evolutionary game of false word-of-mouth information control [J]. Complex Systems and Complexity Science, 2018, 15(3): 39-46.
[18] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
Qian Xiaodong, Yang Bei. Research on the cooperative evolution of supply chain enterprises based on complex network models. [J]. Complex Systems and Complexity Science, 2018, 15(3): 1-10.
[19] 叶航. 公共合作中的社会困境与社会正义——基于计算机仿真的经济学跨学科研究[J]. 经济研究, 2012, (8):132-145.
Ye Hang. Social dilemma and social justice in public cooperation: interdisciplinary research on economics based on computer simulation[J]. Economic Research, 2012, (8):132-145.
[20] Ye H, Tan F, Ding M, et al. Sympathy and punishment: evolution of cooperation in public goods game[J]. Journal of Artificial Societies & Social Simulation, 2011, 14(14):20.
[21] 董志强. 我们为何偏好公平:一个演化视角的解释[J]. 经济研究, 2011, (8):65-77.
Dong Zhiqiang. Why we prefer fairness: an evolutionary perspective of interpretation[J]. Economic Research, 2011, (8): 65-77.
[22] Nowak M A, May R M. Evolutionary games and spatial chaos[J]. Nature, 1992, 359(6398):826-829.
[23] Nowak M A. Super Cooperators: altruism, evolution, and why we need each other to succeed[J]. Journal of Social Political & Economic Studies, 2011, 37(5637):18-18.
[1] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[2] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[3] 苏雪, 徐勇, 樊旭娇. 切换拓扑企业创新时滞演化博弈[J]. 复杂系统与复杂性科学, 2019, 16(1): 54-62.
[4] 李春发, 王学敏, 来茜茜, 薛楠楠. “互联网+”手机回收模式缘何绩效不彰?——基于mABM的演化博弈仿真分析[J]. 复杂系统与复杂性科学, 2019, 16(1): 63-73.
[5] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[6] 董晓娟, 安海岗, 董志良. 有色金属国际期货市场价格联动效应演化分析——以铜、铝、锌为例[J]. 复杂系统与复杂性科学, 2018, 15(4): 50-59.
[7] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
[8] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 56-65.
[9] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[10] 李杰, 张睿, 徐勇. 虚假口碑信息控制演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 39-46.
[11] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[12] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[13] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[14] 肖琴, 罗帆. 机场外来物风险监管策略的演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 18-25.
[15] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed