Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 87-92    DOI: 10.13306/j.1672-3813.2019.03.009
  本期目录 | 过刊浏览 | 高级检索 |
多阈值随机汇池网络自适应估计性能研究
景文腾, 耿金花, 韩博, 段法兵
青岛大学复杂性科学研究所,山东 青岛 266071
Analysis of Estimation Performance of Stochastic Pooling Networks with Multilevel
JING Wenteng, GENG Jinhua, HAN Bo, DUAN Fabing
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1300 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 本文研究了数模转换中多阈值随机汇池网络的自适应信号估计性能,给定网络节点数目,将模数转换的阈值进行均匀划分,分析了随机汇池网络输出的分布函数,理论给出了多阈值随机汇池网络的最优权向量和最小均方误差表达式,以及大规模网络输出的Fisher信息量近似值,实验验证了多阈值随机汇池网络中超阈值随机共振现象,随着阈值数量的增加,噪声的有益性逐渐减弱,而网络估计的最小均方误差不断变小且逐渐接近Fisher信息意义下的误差界。研究结果表明多阈值随机汇池网络的自适应信号估计方法具有重要的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
景文腾
耿金花
韩博
段法兵
关键词 随机汇池网络多阈值划分超阈值随机共振均方误差Fisher信息    
Abstract:An optimal weighted stochastic pooling network is used as the basic framework for analog-to-digital converter (ADC) with multilevel quantizers. This paper, for a fixed number of network nodes, divides the threshold uniformly for easily implement and low costs. Based on the output distribution of the networks, the expressions of the optimal weight vector and the minimum mean square error are derived theoretically. For a sufficiently large size of networks, the Fisher information of the network output is also obtained. The results show that, as the network size increases, the minimum mean square error becomes smaller and smaller, and the noise benefit gradually disappears. However, the minimum mean square error at the optimal noise level approaches the bound denoted by the Fisher information. These theoretical and experimental results of multilevel networks are significant for adaptive signal estimation.
Key wordsstochastic pooling network    multilevel partition    suprathreshold stochastic resonance    mean square error    Fisher information
收稿日期: 2019-06-24      出版日期: 2019-10-24
ZTFLH:  TN911.7  
基金资助:国家自然科学基金(61573202)
通讯作者: 段法兵(1974-),男,山东邹城人,博士,教授,主要研究方向为非线性信号处理。   
作者简介: 景文腾(1995-),男,山东菏泽人,硕士研究生,主要研究方向为自适应信号处理。
引用本文:   
景文腾, 耿金花, 韩博, 段法兵. 多阈值随机汇池网络自适应估计性能研究[J]. 复杂系统与复杂性科学, 2019, 16(3): 87-92.
JING Wenteng, GENG Jinhua, HAN Bo, DUAN Fabing. Analysis of Estimation Performance of Stochastic Pooling Networks with Multilevel. Complex Systems and Complexity Science, 2019, 16(3): 87-92.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.009      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/87
[1]Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A-Mathematical and general, 1981, 14(11): 453-457.
[2]Mcnamara B, Wiesenfeld K, Roy R. Observation of stochastic resonance in a ring laser[J]. Physical Review Letters, 1988, 60(25): 2626-2629.
[3]Vemuri G, Roy R. Stochastic resonance in a bistable ring laser[J]. Physical Review A, 1989, 39(9): 4668-4674.
[4]Bulsara A, Jacobs E W, Zhou T, et al. Stochastic resonance in a single neuron model: theory and analog simulation.[J]. Journal of Theoretical Biology, 1991, 152(4): 531-555.
[5]Stocks N G. Suprathreshold stochastic resonance in multilevel threshold systems[J]. Physical Review Letters, 2000, 84(11): 2310-2313.
[6]Oliaei O. Stochastic resonance in sigma-delta modulators[J]. Electronics Letters, 2003, 39(2): 173-174.
[7]Mcdonnell M D, Stocks N G, Pearce C E M, et al. Analog-to-digital conversion using suprathreshold stochastic resonance[C]// Proceedings of SPIE-The International Society for Optics and Photonics, 2005:75-84.
[8]Stocks N G, Allingham D, Morse R P. The application of suprathreshold stochastic resonance to cochlear implant coding [J]. Fluctuation & Noise Letters, 2002, 2(3): 169-181.
[9]Zozor S, Amblard P O, Duchêne C. On pooling networks and fluctuation in suboptimal detection framework[J]. Fluctuation & Noise Letters, 2007, 7(1): 39-60.
[10] Mcdonnell M D, Abbott D, Pearce C E M. An analysis of noise enhanced information transmission in an array of comparators[J]. Microelectronics Journal, 2002, 33(12): 1079-1089.
[11] Xu L, Vladusich T, Duan F, et al. Decoding suprathreshold stochastic resonance with optimal weights[J]. Physics Letters A, 2015, 379(38): 2277-2283.
[12] Xu L, Duan F, Abbott D, et al. Optimal weighted suprathreshold stochastic resonance with multigroup saturating sensors[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 457:348-355.
[13] Xu L, Duan F, Gao X, et al. Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance[J]. Royal Society Open Science, 2017, 4(9): 160889.
[14] 景文腾, 韩博, 耿金花, 等. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
[15] Mcdonnell M D, Gao X. M-ary suprathreshold stochastic resonance: Generalization and scaling beyond binary threshold nonlinearities[J]. Europhysics Letters, 2014, 108(6): 60003.
[16] Zhou B, Wang X, Qi Q. Optimal weights decoding of M-ary suprathreshold stochastic resonance in stochastic pooling network[J]. Chinese Journal of Physics, 2018, 56(4): 1718-1726.
[17] Cheng C, Zhou B, Gao X, et al. M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise[J]. Physica A: Statistical Mechanics and its Applications, 2017, 479: 48-56.
[18] Mcdonnell M D, Amblard P O, Stocks N G. Stochastic pooling networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2009, (1): 01012.
[19] Hari V N, Anand G V, Premkumar A B, et al. Design and performance analysis of a signal detector based on suprathreshold stochastic resonance[J]. Signal Processing, 2012, 92(7): 1745-1757.
[20] Mandic D P, Kanna S, Constantinides A G. On the intrinsic relationship between the least mean square and Kalman filters [J]. IEEE Signal Processing Magazine, 2015, 32(6): 117-122.
[21] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization[M]. UK: Cambridge University Press, 2008.
[1] 韩博, 景文腾, 耿金花, 段法兵. 最优加权随机汇池网络的自适应算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 85-89.
[2] 景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed