Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 31-38    DOI: 10.13306/j.1672-3813.2018.04.005
  本期目录 | 过刊浏览 | 高级检索 |
蛋白复合物超网络特性分析及应用
胡枫1, 2, 3, 刘猛1, 2, 3, 赵静4, 雷蕾1, 2, 3
1.青海师范大学,西宁 810008;
2.青海省藏文信息处理与机器翻译重点实验室,西宁 810008;
3.藏文信息处理教育部重点实验室,西宁 810008;
4.陆军勤务学院,重庆 401331
Analysisand Application of the Topological Properties of Protein Complex Hypernetworks
HU Feng1,2,3, LIU Meng1,2,3, ZHAO Jing4, LEI Lei1,2,3
1.Qinghai Normal University, Qinghai Xining 810016;
2.Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Qinghai Xining 810008;
3.Tibetan intelligent information processing and Machine Translation Key Laboratory, Qinghai Xining 810008;
4.Army Logistics University of PLA,Chongqing, 401331
全文: PDF(1555 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 研究蛋白复合物超网络的拓扑性质,并根据超网络的相关拓扑指标识别网络的关键蛋白质。根据获取的蛋白复合物数据集,以蛋白质为节点,复合物为超边,构建了蛋白复合物的超网络模型。在此超网络模型上,通过蛋白质的度、超度和子图中心度拓扑指标分析了超网络的结构特性,得到了识别网络中的关键蛋白的方法,并通过在线基因必需性数据库(Online GEne Essentiality, OGEE)中的数据进行了验证。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡枫
刘猛
赵静
雷蕾
关键词 超网络蛋白复合物网络关键蛋白拓扑分析    
Abstract:This paper aims to study the topological properties of protein complex hypernetwork and to solve some practical problems based on topology characteristics of the hypernetwork, including the identification of key proteins of the network. Based on the obtained data set of protein complexes, a hypernetwork model of protein association relationship is constructed, in which each protein is represented by a node and each complex by a hyperedge. We study the topological featuresof the protein complex hypernetwork such as hyperdegree distribution, degree distribution, and sub-hypergraph centrality to identifying the key proteins. Furthermore, the results are verified by Online GEne Essentiality (OGEE) data set.
Key wordshypernetwork    protein complex network    key proteins    topological analysis
     出版日期: 2019-05-16
ZTFLH:  O629.73  
  N949  
基金资助:国家自然科学基金(61663041);青海科技计划项目(2015ZJ723,2018ZJ718);重庆市自然科学基金(cstc2018jcyjAX0090)
作者简介: 胡枫(1970),女,青海民和人,博士,教授,主要研究方向为复杂网络、超网络理论及应用。
引用本文:   
胡枫, 刘猛, 赵静, 雷蕾. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38.
HU Feng, LIU Meng, ZHAO Jing, LEI Lei. Analysisand Application of the Topological Properties of Protein Complex Hypernetworks. Complex Systems and Complexity Science, 2018, 15(4): 31-38.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.005      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/31
[1]Watts D J, Strogtz S H. Collective dynamic of ‘small- word’network[J]. Nature, 1998, 393(6684):440442.
[2]Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509522.
[3]Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45:167256.
[4]Dorogovtsev S N, Mendes J F F. Evolution of networks[J]. Advances in Physics, 2002, 51(4):10791187.
[5]Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410:268276.
[6]Wang J W, RongL L, Deng Q H, et al. Evolving hypernetwork model[J]. The European Physocial Journal B-Condensed Matter and Complex Systems, 2010, 77(4):493498.
[7]胡枫, 赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J]. 中国科学:物理学力学天文学, 2013, 43(1):1622.
Hu Feng, Zhao Haixing, Ma Xiujuan. An evolving hypernetwork model and its properities[J]. Scientia Sinica, 2013, 43(1):1622.
[8]胡枫, 赵海兴, 何佳培等. 基于超网络的科研合作网络演化模型[J].物理学报, 2013, 62(19):198901.
Hu Feng, Zhao Haixing, He Jiapei, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica,2013,62(19):198901.
[9]Suo Q, Guo J L, Shen A Z. Information spreading dynamics in hypernetworks[J]. Physica A, 2018, 495:475487.
[10] Suo Q, Guo J L, Sun S W, et al. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs[J]. Physica A, 2018, 489:141148.
[11] 索琪, 郭进利, 王福红.电视节目竞争关系的超网络分析[J].复杂系统与复杂性科学, 2016, 13(3):3339.
Suo Qi, Guo Jinli, Wang Fuhong. The hypernetwork analysis of the television programs competitive relationships[J]. Complex Systems and Complexity Science, 2016, 13(3):3339.
[12] 索琪, 郭进利. 超网络中的舆情传播模型及仿真研究[J]. 计算机应用研究, 2017, 34(9):26292632.
Suo Qi, Guo Jinli. Spreading model and simulation analysis of internet public opinion in hypernetworks[J]. Appliction Research of Computers, 2017, 34(9):26292632.
[13] 索琪, 郭进利. “随机”与“择优”—超网络演化的内在驱动力[J]. 复杂系统与复杂性科学, 2016, 13(4):5155.
Suo Qi, Guo Jinli. Both random and preferential attachment—the inner motivation in the evolution of hypernetworks[J]. Complex Systems and Complexity Science, 2016, 13(4):5155.
[14] 郭进利. 非均齐超网络中标度率的涌现—富者越富导致幂律分布?[J]. 物理学报, 2014, 63(20):208901.
Guo Jinli. Emergence of Scaling in non-uniform hypernetworks-does “the rich get richer” lead to a power-law distribution?[J]. ActaPhysicaSinica, 2014, 63(20):208901.
[15] Guo J L, Suo Q, Jeffrey F, et al. Non-uniform evolving hypergraphs and weighted evolving hypergraphs[J]. Scientific Reports, 2016, 6(1):36648.
[16] Zhang Z K, Liu C. A Hypergraph model of social tagging networks[J]. Journal of Statistical Mechanics, 2010, P10005.
[17] Vendruscolo M, Dokholyan N V, Paci E, et al. Small-world view of the amino acids that play a key role in protein folding[J]. Physical Review E, 2002, 65(6):061910.
[18] Aftabuddin M, Kundu S. Weighted and unweighted network of amino acids within protein[J]. Physica A:Statistical Mechanics and its Applications, 2006, 369(2):895904.
[19] Jeong H, Mason S P, Barabási A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411(6833): 4142.
[20] Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast[J]. Proteomics, 2006, 6(1):3540.
[21] 黄海滨,杨路明,王建新,等. 基于复合参数的蛋白质网络关键节点识别技术[J].自动化学报, 2008, 34(11):13881395.
Huang Haibin, Yang Luming, Wang Jianxin, et al. Identification technique of essential nodes in protein networks based on combined parameters[J]. Acta Automatica Sinica, 2008, 34(11):13881395.
[22] Ramadan E, Tarafdar A, Pothen A. A hypergraph model for the yeast protein complex network[C]∥Parallel and Distributed Processing Symposium, IEEE, 2004:189b.
[23] Estrada E, Rodríguez-Velázquez J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A:Statistical Mechanics and Its Applications, 2006, 364:581594.
[24] Berge C. Graphs and Hypergraphs[M]. New York: Elsevier, 1973.
[25] Ruepp A,Waegele B,Lechneet M, et al. CORUM: the comprehensive resource of mammalian protein complexes-2009[J]. Nucleic Acids Research, 2010, 38, 497501.
[26] 胡枫,李发旭,赵海兴. 超网络的无标度特性研究[J]. 中国科学:物理学力学天文学, 2017, 47(6):060501.
Hu Feng, Li Faxu, Zhao Haixing, et al. The Research on scale-free characteristics of hypernetworks [J]. Acta Physica Sinica, 2013, 62(19):198901.
[27] Chen W H, Minguez P, Lercher M J, et al. OGEE: an online gene essentiality database[J]. Nucleic Acids Research, 2012, 40, 901906.
[1] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[2] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed