Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (1): 23-29    DOI: 10.13306/j.1672-3813.2021.01.004
  本期目录 | 过刊浏览 | 高级检索 |
基于生成对抗网络的半监督图像语义分割
朱锋, 刘其朋
青岛大学复杂性科学研究所,山东 青岛 266071
Semi-Supervised Semantic Segmentation Based on Generative Adversarial Networks
ZHU Feng, LIU Qipeng
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(3436 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种基于生成对抗网络的语义分割模型,包括一个全卷积语义分割网络以及一个判别网络,其中语义分割网络负责生成与输入图像对应的语义分割图,判别网络负责检测分割图与真实标签的区别,以促使分割网络改进分割效果。为了更好的提取全局结构信息,语义分割网络中采用了金字塔池化模块,对不同规模的空间区域进行池化操作。另外,为了应对语义分割训练数据集人工标注成本过高的问题,利用判别网络生成伪标签协助语义分割网络进行训练,从而实现了半监督训练效果。模型在PASCAL VOC2012数据集中进行了测试,结果表明该模型在全监督和半监督条件下均优于已有方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱锋
刘其朋
关键词 语义分割生成对抗网络金字塔池化半监督训练    
Abstract:In this paper, we use generative adversarial network (GAN) to improve semantic segmentation of images. The model is composed of a semantic segmentation network and a discriminant network, where the segmentation network responses for generating semantic segmentation result while the discriminant network responses for detecting the difference between the generated result and the labels on the global structure level and improving the segmentation effect. In order to extract context information, we adopt the spatial pyramid pooling module in the segmentation network, which could perform pooling operation on multiple levels of sub-regions. Meanwhile, in order to solve the problem of a large number of manual annotations needed in the semantic segmentation data set, we use the discriminant network to generate pseudo labels and realize semi-supervision in the training of the segmentation network. The model has been tested using PASCAL VOC2012 dataset, and the results show that supervised and semi-supervised approaches proposed in this paper are superior to the existing methods.
Key wordssemantic segmentation    generative adversarial network    pyramid pooling    semi-supervision training
收稿日期: 2020-07-21      出版日期: 2020-12-28
ZTFLH:  TP183  
基金资助:国家自然科学基金(61503207)
通讯作者: 刘其朋(1985),男,山东菏泽人,博士,副教授,主要研究方向为自动驾驶与智能交通。   
作者简介: 朱锋(1995),男,山东烟台人,硕士研究生,主要研究方向为深度学习及其在自动驾驶中的应用。
引用本文:   
朱锋, 刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 18(1): 23-29.
ZHU Feng, LIU Qipeng. Semi-Supervised Semantic Segmentation Based on Generative Adversarial Networks. Complex Systems and Complexity Science, 2021, 18(1): 23-29.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.01.004      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I1/23
[1] Lateef F,Ruichek Y. Survey on semantic segmentation using deep learning techniques[J]. Neurocomputing, 2019, 338: 321348.
[2] Xia K J, Yin H S, Qian P J, et al. Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images[J]. IEEE Access, 2019, 7(99): 9634996358.
[3] Kundu A, Vineet V, Koltun V. Feature space optimization for semantic video segmentation[C]//Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016: 31683175.
[4] Long J,Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 34313440.
[5] Chandra S, Kokkinos I. Fast, exact and multi-scale inference for semantic image segmentation with deepgaussian crfs[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016: 402418.
[6] Liu Z, Li X, Luo P, et al. Semantic image segmentation via deep parsing network[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 13771385.
[7] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of Neural Information Processing Systems (NeurIPS). Montreal, Canada: NIPS, 2014: 26722680.
[8] Luc P,Couprie C, Chintala S, et al. Semantic segmentation using adversarial networks[DB/OL].(20161125) [20201030].https://arxiv.org/pdf/1611.08408.pdf.
[9] Hung W, Tsai Y, Liou Y, et al. Adversarial learning for semi-supervised semantic segmentation[DB/OL].(20180724) [20201030].https://arxiv.org/pdf/1802.07934.pdf.
[10] 刘贝贝,华蓓. 基于编码器解码器的半监督图像语义分割[J]. 计算机系统应用, 2019, 28(11):182187.
Liu Beibei, Hua Bei. Encoder-decoder for semi-supervised image semantic segmentation[J]. Computer Systems & Applications, 2019, 28(11): 182187.
[11] 张桂梅,潘国峰. 基于自适应对抗学习的半监督图像语义分割[J]. 南昌航空大学学报:自然科学版, 2019, 33(3): 3240.
Zhang Guimei, Pan Guofeng. Semi-supervised image semantic segmentation based on adaptive adversarial learning[J]. Journal of Nanchang Hangkong University: Social Sciences, 2019, 33(3): 3240.
[12] 潘国峰. 基于生成对抗网络的语义分割方法研究[D]. 南昌:南昌航空大学硕士论文,2019.
Pan Guofeng. Research on semantic segmentation method based on generative adversarial networks[D]. Nanchang: Nanchang Hangkong University, 2019.
[13] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 28812890.
[14] Everingham M, Van Gool L, Williams C, et al. The PASCAL visual object classes challenge 2012 results [DB/OL].[20200721]. http://www.pascalnetwork.org/challenges/VOC/voc2012/ workshop /index.html.
[15] Bulo S, Porzi L Kontschieder P. In-place activated batchnorm for memory-optimized training of DNNs[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018:56395647.
[16] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. (20160107)[20200630].https://arxiv.org/pdf/1511.06434.pdf%c3.
[17] Hariharan B, Arbeláez P, Bourdev L, et al. Semantic contours from inverse detectors[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011: 991998.
[18] Chen L, Papandreou G, Kokkinos I, et al.DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834848.
[1] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020, 17(4): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed