Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 60-66    DOI: 10.13306/j.1672-3813.2021.03.009
  本期目录 | 过刊浏览 | 高级检索 |
白噪声作用下欠阻尼随机双稳系统中的随机共振
朱福成1, 郭锋2
1.绵阳职业技术学院,四川 绵阳 621000;
2.西南科技大学信息工程学院,四川 绵阳 621000
Stochastic Resonance for an Underdamped Stochastic Bistable System Subject to White Noise
ZHU Fucheng1, GUO Feng2
1. Mianyang Polytechnic, Mianyang 621000, China;
2. School of Information Engineering of Southwest University of Science and Technology, Mianyang 621010, China
全文: PDF(1187 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于两态理论,利用绝热近似条件,根据随机势能的统计特性,推导出系统输出信噪比(SNR)的数学表达式。研究结果表明,SNR随阻尼系数、加性噪声强度、以及系统参数的变化出现随机共振现象。随着随机势能相关长度的增大,SNR的最大值单调减小;随着随机势能幅度的增大,SNR的最大值单调增加。数值仿真结果表明系统输出信噪比与理论结果相符。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱福成
郭锋
关键词 随机共振欠阻尼双稳系统随机势能白噪声    
Abstract:Based on the two-state theory, under the adiabatic approximation condition, applying the properties of the stochastic potential, the system output signal-to-noise ratio (SNR) is obtained. It is shown that the SR phenomenon can be found as SNR varies with the damping coefficient, with the additive noise strength, as well as with the system parameters. With the increase of the correlation length of stochastic potential, the maximum value of SNR decreases monotonically; while with the increase of the amplitude of the stochastic potential, the maximum value of SNR increases monotonically. Numerical simulation results show that the output SNR of the system is consistent with the theoretical results.
Key wordsstochastic resonance    underdamped bistable system    stochastic potential    white noise
收稿日期: 2020-06-10      出版日期: 2021-06-18
ZTFLH:  TN911.7  
基金资助:国家自然科学基金(61771411)
作者简介: 朱福成(1969-),男,四川北川人,学士,教授,主要研究方向为电子信息技术、通信技术、自动控制技术和计算机。
引用本文:   
朱福成, 郭锋. 白噪声作用下欠阻尼随机双稳系统中的随机共振[J]. 复杂系统与复杂性科学, 2021, 18(3): 60-66.
ZHU Fucheng , GUO Feng. Stochastic Resonance for an Underdamped Stochastic Bistable System Subject to White Noise. Complex Systems and Complexity Science, 2021, 18(3): 60-66.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.009      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/60
[1] McNamara B, Weksenfeld K. Theory of stochastic resonance [J]. Physical Review A,1989, 39(5): 4854-4869.
[2] 高仕龙,钟苏川,韦鹏,等.过阻尼分数阶Langeven方程及其随机共振[J]. 物理学报,2012,61(10):100502.
Gao Shilong, Zhong Suchuan,Wei Peng, et al. The resonant behavior of an over-damped linear fractional Langevin equation [J]. Acta Physica Sinica, 2012,61(10):100502.
[3] 董小娟,晏爱君.双稳态系统中随机共振和相干共振的相关性[J].物理学报,2013,62(7):070501.
Dong Xiaojuan, Yan Aijun. The relationship between stochastic resonance and coherence resonance in a bi-stable system [J]. Acta Physica Sinica, 2013, 62(7):070501.
[4] Lin L F, Yuan X Z, Wang H Q, et al. The stochastic incentive effect of venture capital in partnership systems with the asymmetric bistable cobb-douglas utility [J].Communication Nonlinear Science of Numerical Simulation,2019, 66(2):109-128.
[5] 贺利芳,杨玉蕾,张天骐.时延反馈EVG系统随机共振特性研究及轴承故障诊断[J].仪器仪表学报,2019,40(8):47-57.
He Lifang, Yang Yulei, Zhang Tianqi. Stochastic resonance characteristic study and bearing fault diagnosis of time-delayed feedback EVG system [J]. Chinese Journal of Scientific Instrument, 2019, 40(8):47-57.
[6] Liu R F, Ma W J, Zeng J K, et al. Double stochastic resonance in an insect ecosystem with time delays[J]. Physica A,2019, 517(6): 563-576.
[7] Wang K K, Ye H, Wang Y J, et al. Impact of colored cross-correlated noises on stochastic resonance and mean extinction rate for a metapopulation system with a multiplicative periodic signal [J]. Chinese Journal of Physics,2018, 56(8): 2191-2203.
[8] 王慧,张刚,张天骐.改进型双稳随机共振系统及其在轴承故障诊断的应用[J].西安交通大学学报,2020,44(4):110-117.
Wang Hui, Zhang Gang, Zhang Tianqi. Improved bistable stochastic resonance system and its application in bearing fault diagnosis [J]. Journal of Xi′an Jiaotong University, 2020,44(4):110-117.
[9] 贺利芳,江川,张刚,等.分段线性非对称系统在故障检测中的研究[J].仪器仪表学报,2020, 2(5): 226-234.
He Lifang, Jiang Chuan, Zhang Gang, et al. Research on fault detection of the piecewise linear asymmetric system [J]. Chinese Journal of Scientific Instrument, 2020, 2(5): 226-234.
[10] 时培明,袁丹真,张文跃,等.基于时延反馈多稳随机共振的微弱信号检测方法[J].计量学报,2020,41(7): 868-872.
Shi Peiming, Yuan Danzhen, Zhang Wenyue, et al. Weak signal detection method based on delay feedback multistable stochastic resonance[J]. Acta Metrologica Sinica, 2020,41(7): 868-872.
[11] 钟苏川,蔚涛,张路,等.具有质量及频率涨落的欠阻尼线性谐振子的随机共振[J].物理学报,2015,64(2):020202.
Zhong Suchuan, Yu tao, Zhang Lu, et al. Stochastic resonance of an underdamped linear harmonic oscillator with fluctuating mass and fluctuating frequency[J]. Acta Physica Sinica, 2015,64(2):020202.
[12] Xu Y, Wu J, Zhang H Q, et al. Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise [J]. Nonlinear Dynamics, 2012,70(12): 531-539.
[13] Guo Y F, Shen Y J, Tan J G. Stochastic resonance in second-order and underdamped asymmetric bistable system [J]. Modern Physics Letters B, 2015, 29(5): 1550034.
[14] He M J, Xu W, Sun Z K, et al. Characterizing stochastic resonance in coupled bistable system with poisson white noises via statistical complexity measures [J]. Nonlinear Dynamics, 2017, 88(7): 1163-1171.
[15] Jin Y F. Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal [J]. Chinese Physics B, 2018, 27(8): 050501.
[16] Xu P F, Jin Y F, Zhang Y X. Stochastic resonance in an underdamped triple-well potential system [J].Applied Mathematics and Computation,2019, 346(9): 352-362.
[17] Zhao T J, Cao T G, Zhan Y, et al. Rocking ratchets with stochastic potentials [J]. Physica A, 2002,312(2): 109-118.
[18] Jia Y, Yu S N. Effects of random potential on transport [J]. Physics Review E, 2001, 63(2): 052101.
[19] Ai B Q, Liu L G. Stochastic resonance in a stochastic bistable system[J]. Journal of Statistical Mechanics: Theory and Experiment, 2007,7(2): 02019.
[20] Guo F, Zhou Y R. Stochastic resonance in a stochastic bistable system subject to additive white noise and dichotomous noise [J]. Physica A, 2009, 388(9): 3371-3376.
[21] Guo F, Luo X D, Li S F, et al. Stochastic resonance in a stochastic bistable system with additive noises and square-wave signal [J]. Chinese Physics B, 2010, 19(8): 080502.
[22] Li J H. Stochastic resonance of wingle (independent of each other) protein motor system with fluctuating potential barrier [J].Communication Theory of Physics,2008, 49(8): 945-950.
[23] Dunlap D H, Parris P E, Kenkre V M. Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers[J]. Physical Review Letters, 1996,77(6): 542-545.
[24] Kenkre V M, Kus M, Dunlap D H, et al. Nonlinear field dependence of the mobility of a charge subjected to a superposition of dichotomous stochastic potentials[J]. Physical Review E,1998, 58(8): 99-4.
[25] Gammaitoni L, Hanggi P, Jung P, et al. Stochastic Resonance [J]. Review Modern Physics,1998, 70(8): 223-246.
[26] Jesus C P, Jose G O, Manuel M, et al. Two-state theory of nonlinear stochastic resonance[J]. Physical Review Letters, 2003, 91(2): 210601.
[1] 景文腾, 耿金花, 韩博, 段法兵. 多阈值随机汇池网络自适应估计性能研究[J]. 复杂系统与复杂性科学, 2019, 16(3): 87-92.
[2] 池阔, 康建设, 张星辉, 杨志远, 赵斐. 基于匹配稳态随机共振的轴承故障诊断方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 85-94.
[3] 陈楠, 王友国, 翟其清. 多阈值系统中的阈上随机共振研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 71-76.
[4] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[5] 李恒, 王友国, 翟其清. 阈值阵列系统中TCM编译码的随机共振现象[J]. 复杂系统与复杂性科学, 2018, 15(1): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed