Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (4): 66-73    DOI: 10.13306/j.1672-3813.2021.04.008
  本期目录 | 过刊浏览 | 高级检索 |
常规能源国际贸易网络演化特征研究
蒋培祥a,c, 董志良b,c, 张翠芝a,c, 张亦池c,d
河北地质大学 a.城市地质与工程学院;
b.自然资源资产资本研究中心;
c.河北省矿产资源战略与管理研究基地;
d.管理学院,石家庄 050031
On Evolution Characteristics of International Trade Network of Conventional Energy
JIANG Peixianga,c, DONG Zhiliangb,c, ZHANG Cuizhia,c, ZHANG Yichic,d
a. School of Management Science and Engineering;
b. Natural Resource Asset Capital Research Center;
c. Hebei Mineral Resources Strategy and Management Research Base;
d. School of Management, Hebei University of Geosciences, Shijiazhuang 050031, China
全文: PDF(1853 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究常规能源贸易网络演化特征,利用2010~2019年能源国际贸易数据,基于复杂网络理论,构建有向加权网络,分析网络整体特征、贸易核心国及中国在网络中的特征变化等。结果显示,常规能源贸易规模越来越大;美国、荷兰、中国对贸易控制能力较强;中国是连接网络的核心节点。建议各国观测美国、荷兰、中国的贸易趋势调整贸易量;美国、日本、中国是贸易国首选的贸易伙伴;资源不足且需求大的国家与沙特、俄罗斯等建立贸易关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋培祥
董志良
张翠芝
张亦池
关键词 常规能源国际贸易复杂网络贸易特征    
Abstract:In order to study the evolution characteristics of conventional energy trade network, based on the energy international trade data from 2010 to 2019 and the complex network theory, this paper constructs a directed weighted network to analyze the overall characteristics of the network and the changes of the characteristics of trade core countries and China in the network. The results show that the scale of conventional energy trade is becoming larger and larger; The United States, the Netherlands and China have strong ability to control trade; China is the core node connecting the network. It is suggested that all countries should observe the trade trend of the United States, the Netherlands and China and adjust the trade volume; The United States, Japan and China are the preferred trading partners of trading countries; Countries with insufficient resources and high demand establish trade relations with Saudi Arabia, Russia and other countries.
Key wordsconventional energy    international trade    complex network    trade characteristic
收稿日期: 2020-11-30      出版日期: 2021-11-30
ZTFLH:  F416.2  
  F407.2  
基金资助:国家社会科学基金(17BGL202)
通讯作者: 董志良(1975-),男,河北石家庄人,硕士,教授,主要研究方向为管理科学与工程。   
作者简介: 蒋培祥(1994-),男,河北衡水人,硕士研究生,主要研究方向为大数据分析。
引用本文:   
蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
JIANG Peixiang, DONG Zhiliang, ZHANG Cuizhi, ZHANG Yichi. On Evolution Characteristics of International Trade Network of Conventional Energy. Complex Systems and Complexity Science, 2021, 18(4): 66-73.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.04.008      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I4/66
[1]邵朝对.能源价格冲击对中国贸易结构的传递效应-基于投入产出法的实证研究[J].上海经济研究,2012,24(7):22-30,42.
Shao Chaodui. Transmission effect of energy price shock on China′s trade structure-an empirical study based on input-output method [J]. Shanghai Economic Research, 2012,24 (7): 22-30,42.
[2]蔡进洲.国际贸易中石油价格的波动性与风险分析[J].中国商贸,2012(29):184-186.
Cai Jinzhou. Volatility and risk analysis of oil price in international trade [J]. China Business Journal, 2012(29): 184-186.
[3]杨鑫,安海忠,高湘昀.国际天然气贸易关系网络结构特征研究:基于复杂网络理论[J].资源与产业,2012,14(2):81-87.
Yang Xin, An Haizhong, Gao Xiangyun. Research on network structure characteristics of international natural gas trade relations: based on complex network theory [J]. Resources and Industry, 2012,14 (2): 81-87.
[4]刘建.基于社会网络的国际原油贸易格局演化研究[J].国际贸易问题,2013,39(12):48-57.
Liu Jian. Research on the evolution of international crude oil trade pattern based on social network [J]. International Trade Issues, 2013,39(12): 48-57.
[5]肖建忠,彭莹,王小林.天然气国际贸易网络演化及区域特征研究——基于社会网络分析方法[J].中国石油大学学报(社会科学版),2013,29(3):1-8.
Xiao Jianzhong, Peng Ying, Wang Xiaolin. Research on evolution and regional characteristics of natural gas international trade network based on social network analysis method [J]. Journal of China University of Petroleum (Social Science Edition), 2013,29 (3): 1-8.
[6]Zhong W,An H,Gao X, et al. The evolution of communities in the international oil trade network[J]. Physica A Statistical Mechanics & Its Applications, 2014, 413(11):42-52.
[7]Zhong W, An H, Fang W, et al. Features and evolution of international fossil fuel trade network based on value of emergy[J]. Applied Energy, 2016, 165(1):868-877.
[8]邓富华,冯乾彬,田霖.“一带一路”倡议下中国石油进口贸易效率及潜力研究[J].重庆大学学报(社会科学版),2019,25(5):18-29.
Deng Fuhua, Feng Qianbin, Tian Lin. "One belt, one road" the efficiency and potential of China′s oil import trade [J]. Journal of Chongqing University (Social Sciences), 2019,25 (5): 18-29.
[9]何则,杨宇,刘毅,等.世界能源贸易网络的演化特征与能源竞合关系[J].地理科学进展,2019,38(10):1621-1632.
He Ze, Yang Yu, Liu Yi, et al. Evolution characteristics of world energy trade network and the relationship between energy competition and cooperation [J]. Progress in Geographical Sciences, 2019,38 (10): 1621-1632.
[10] Xiang L, Yu Y J, Chen G. Complexity and synchronization of the world trade web[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 328(1/2):287-296.
[11] Geng J B, Ji Q, Fan Y. A dynamic analysis on global natural gas trade network[J]. Applied Energy, 2014,132(1):23-33.
[12] Zhang H Y, Ji Q, Fan Y. Competition, transmission and pattern evolution: a network analysis of global oil trade-ScienceDirect[J]. Energy Policy, 2014, 73(1):312-322.
[13] Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks.[J]. Nature, 1998,393(6684):440-442.
[14] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[15] 张若凡,申怡然,刘泽华.基于复杂网络的中国管理学领域研究热点及演进[J].统计与管理,2019(8):104-109.
Zhang ruofan, Shen Yiran, Liu Zehua. Research hotspots and evolution of Chinese management based on complex networks [J]. Statistics and Management, 2019(8): 104-109.
[16] Beyza J, Ruiz-Paredes H F, Garcia-Paricio E, et al. Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540(6):123169.
[17] 孙永龙.基于复杂网络视角下的高纯碳酸锂应用与制备方法研究[J].化工理,2019, 533(26):128-129.
Sun Yonglong. Application and preparation of high purity lithium carbonate from the perspective of complex network [J]. Chemical Engineering, 2019, 533(26): 128-129.
[18] 王雪,杨栋婷,刘文娜,等.基于复杂网络分析的针刺治疗脑卒中后抑郁的俞穴配伍规律研究[J].中国医药导报,2019,16(33):111-115.
Wang Xue, Yang Dongting, Liu Wenna, et al. Study on compatibility of Shu Points in acupuncture treatment of post-stroke depression based on complex network analysis [J]. China Medical Guide, 2019,16 (33): 111-115.
[19] Xi X, Zhou J, Gao X, et al. Impact of the global mineral trade structure on national economies based on complex network and panel quantile regression analyses[J]. Resources, Conservation and Recycling, 2020, 154(4):104637.
[1] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[2] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[3] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[4] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[5] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[6] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[7] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[8] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[9] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[10] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[11] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[12] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[13] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[14] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[15] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed