Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (1): 74-80    DOI: 10.13306/j.1672-3813.2022.01.010
  本期目录 | 过刊浏览 | 高级检索 |
多路径选择变速双目标物流配送路径规划
孔珊, 仲昭林, 张纪会
青岛大学 a.复杂性科学研究所;b.山东省工业控制技术重点实验室,山东 青岛 266071
Bi-objective Vehicle Routing Problems with Path Choice and Variable Speed
KONG Shan, ZHONG Zhaolin, ZHANG Jihui
a. Institute of Complexity Science; b. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1921 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究任意两点之间存在多条通路的带时间窗和能力约束的变速车辆路径问题,使总配送成本最小的同时最大化客户总体满意度。刻画车辆行驶速度时同时考虑了通行时段和路况因素,建立双目标的混合整数规划模型,并采用改进蚁群算法求解。仿真结果表明所提模型和改进算法有效,对于复杂路况下车辆配送路径规划问题有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔珊
仲昭林
张纪会
关键词 物流配送多路径选择变速行驶改进蚁群算法    
Abstract:This paper studied a bi-objective vehicle routing problem with time windows, variable speed, multiple path choice, and capacity constraints (BOVRPTWVDPC) in a complex road network aiming at minimizing the total cost of distribution and maximizing the overall customer satisfaction. In modelling of customer’s satisfaction, the factors of distribution time window and customer priority were taken into account, and in the description of vehicle speed, the traffic period and road conditions were considered. A bi-objective mixed integer programming model was established, and an improved ant colony algorithm was designed to solve the problem. The simulation results show that the proposed model and the improved algorithm are effective and have certain reference value for vehicle distribution path planning under complex road conditions.
Key wordslogistics distribution    multipath selection    variable speed driving    improved ant colony algorithm
收稿日期: 2021-04-01      出版日期: 2022-02-21
ZTFLH:  TP18  
基金资助:国家自然科学基金(61673228,62072260);青岛市科技局计划(21-1-2-16-zhz)
通讯作者: 张纪会(1969-),男,山东青岛人,博士,教授,主要研究方向为复杂系统建模、智能优化理论与方法。   
作者简介: 孔珊(1996-),女,山东枣庄人,硕士研究生,主要研究方向为物流系统工程。
引用本文:   
孔珊, 仲昭林, 张纪会. 多路径选择变速双目标物流配送路径规划[J]. 复杂系统与复杂性科学, 2022, 19(1): 74-80.
KONG Shan, ZHONG Zhaolin, ZHANG Jihui. Bi-objective Vehicle Routing Problems with Path Choice and Variable Speed. Complex Systems and Complexity Science, 2022, 19(1): 74-80.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.01.010      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I1/74
[1] DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91.
[2] MALANDRAKI C, DASKIN M S. Time dependent vehicle routing problems: formulations, properties and heuristic algorithms[J]. Transportation Science, 1992, 26(3): 185-200.
[3] 周鲜成,刘长石,周开军,等.时间依赖型绿色车辆路径模型及改进蚁群算法[J].管理科学学报, 2019, 22(5): 57-68.
ZHOU X C, LIU C S, ZHOU K J, et al. Improved ant colony algorithm and modeling of time-dependent green vehicle routing problem[J]. Journal of Management Sciences in China, 2019, 22(5): 57-68.
[4] POONTHALIR G, NADARAJAN R. A fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP)[J]. Expert Systems With Applications, 2018, 100: 131-144.
[5] FAN H M, ZHANG Y G, TIAN P J, et al. Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance[J].Computers and Operations Research,2021,129:105211.
[6] GMIRA M, GENDREAU M, LODI A, et al. Tabu search for the time-dependent vehicle routing problem with time windows on road network[J]. European Journal of Operational Research, 2021, 288(1): 129-140.
[7] BEHNKE M, KIRSCHSTEIN T. The impact of path selection on GHG emissions in city logistics[J]. Transportation Research Part E, 2017, 106: 320-336.
[8] WANG L, GAO S, WANG K, et al. Time-dependent electric vehicle routing problem with time windows and path flexibility[J]. Journal of Advanced Transportation, 2020, 3030197: 1-19.
[9] 李顺勇,但斌,葛显龙.多通路时变网络下低碳车辆路径优化模型与算法[J].计算机集成制造系统, 2019, 25(2): 454-468.
LI S Y, DAN B, GE X L. Optimization model and algorithm of low carbon vehicle routing problem under multi-graph time-varying network[J]. Computer Integrated Manufacturing Systems, 2019, 25(2): 454-468.
[10] 程兴群,金淳,姚庆国,等.碳交易政策下多式联运路径选择问题的鲁棒优化研究[J].中国管理科学, 2021, 29(6): 82-90.
CHENG X Q, JIN C, YAO Q G, et al. Research on robust optimization for route selection problem in multimodal transportation under the cap and trade policy[J]. Chinese Journal of Management Science, 2021, 29(6): 82-90.
[11] SUN J Y, HUANG J L, CHEN Y Y, et al. Flexible bus route optimization for multitarget stations[J]. Mathematical Problems in Engineering, 2020: 1-8.
[12] IGNAZIO A C, GIUSEPPE M, CORRADO R, et al. Route and path choices of freight vehicles: a case study with floating car data[J]. Sustainability, 2020, 12(20): 8557-8557.
[13] 余建军,程文琪,吴永忠.考虑顾客满意度的生鲜外卖路径规划[J].工业工程与管理, 2021, 26(4): 158-167.
YU J J, CHENG W Q, WU Y Z. Path planning of fresh takeout considering customer satisfaction[J]. Industrial Engineering and Management, 2021, 26(4): 158-167.
[14] BARKAOUI M, BERGER J, BOUKHTOUTA A. Customer satisfaction in dynamic vehicle routing problem with time windows[J]. Applied Soft Computing, 2015, 35: 423-432.
[15] RAJAK S, PARTHIBAN P, DHANALAKSHMI R. Multi-depot vehicle routing problem based on customer satisfaction[J]. International Journal of Services Technology and Management, 2020, 26(2/3): 252-265.
[16] SONG M X, LI J Q, HAN Y Q, et al. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics[J]. Applied Soft Computing, 2020, 95: 10651.
[17] Afshar-Bakeshloo M, Mehrabi A, Safari H, et al. A green vehicle routing problem with customer satisfaction criteria[J]. Journal of Industrial Engineering International, 2016, 12(4): 529-544.
[18] Guerriero F, Surace R, Loscrí V, et al. A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints[J]. Applied Mathematical Modelling, 2014, 38(3): 839-852.
[19] 汪定伟, 王俊伟, 王洪峰. 智能优化算法[M]. 北京: 高等教育出版社, 2007: 166-167.
[1] 朱锋, 刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 18(1): 23-29.
[2] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[3] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[4] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[5] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020, 17(4): 30-37.
[6] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
[7] 徐泽洲, 曲大义, 洪家乐, 宋晓晨. 智能网联汽车自动驾驶行为决策方法研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed