Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 104-110    DOI: 10.13306/j.1672-3813.2022.02.013
  本期目录 | 过刊浏览 | 高级检索 |
废铜资源全球贸易网络演化特征与响应策略研究
董晓娟a, 安海岗a, 都沁军b, 董志良c, 陆刚a
河北地质大学 a.管理学院;b.教务处;c.科技处,石家庄 050031
Research on Evolution Characteristics and Response Strategies of Global Trade Network of Scrap Copper Resources
DONG Xiaojuana, AN Haiganga, DU Qinjunb, DONG Zhiliangc, LU Ganga
a. School of Management; b. Office of Educational Administration; c. Office of Science and Technology, Hebei GEO University, Shijiazhuang 050031, China
全文: PDF(4026 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究废铜贸易演变之下的相关对策,基于复杂网络理论分析了废铜贸易的演化特征,并分析了它与煤炭指数、全球铜储量、全球铜产量、铜矿期货价格的相关性。结果表明,煤炭指数、铜矿期货价格与网络统计特征体现为同期和超前正、负相关关系。全球铜产量、储量与网络统计特征呈现同期正、负相关关系。基于上述结果,从进口结构、能源价格调节、进口政策等方面提出了相应的响应策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董晓娟
安海岗
都沁军
董志良
陆刚
关键词 废铜复杂网络全球贸易演化特征响应策略    
Abstract:In order to study the relevant policies under the evolution of scrap copper trade, this paper analyzes the evolution characteristics of scrap copper trade based on complex network theory, and analyzes its correlation with coal index, global copper reserves, global copper output and copper futures price. The results show that there is a positive and negative correlation between coal index, copper futures price and network statistical characteristics in the same period or the previous period. Global copper production, reserves and network statistical characteristics show positive and negative correlation in the same period. Based on the above results, this paper puts forward the corresponding response strategies from the aspects of import structure, energy price adjustment and import policy.
Key wordsrecycled copper    complex network    global trade    evolution characteristics    response strategy
收稿日期: 2021-01-31      出版日期: 2022-05-23
ZTFLH:  F831  
基金资助:国家社会科学基金(17BGL202);河北省高等学校人文社会科学研究项目(SQ191006);河北省高等学校人文社会科学研究项目(SD191006);河北省省级科技计划软科学研究专项(21557621D);河北省省级科技计划软科学研究专项(21555401D);河北地质大学校内青年项目(QN202115)
作者简介: 董晓娟(1980-),女,河北赞皇人,硕士,副教授,主要研究方向为矿产资源贸易、复杂网络、电子商务。
引用本文:   
董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
DONG Xiaojuan, AN Haigang, DU Qinjun, DONG Zhiliang, LU Gang. Research on Evolution Characteristics and Response Strategies of Global Trade Network of Scrap Copper Resources. Complex Systems and Complexity Science, 2022, 19(2): 104-110.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.013      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/104
[1] 李干杰. 全面禁止洋垃圾入境 维护国家生态环境安全和人民群众身体健康[N]. 人民日报, 2017-07-28(011).
LI G J. A total ban on foreign garbage entry to safeguard national ecological environment security and the health of the people [N]. People's Daily, 2017-07-28(011).
[2] 张菲菲. 2008—2010年主要再生资源品种的市场价格分析[J]. 再生资源与循环经济, 2010, 3(12): 20-24.
ZHANG F F. Analysis on market prices of main recyclable resources during 2008 to 2010 [J]. Renewable Resources and Circular Economy, 2010, 3 (12): 20-24.
[3] 黄健柏, 秦灵. 原铜市场和废铜市场的价格联动关系的实证研究[J].价格理论与实践, 2013(9):60-61.
HUANG J B, QIN L. An empirical study on the price linkage between the original copper market and the waste copper market [J]. Price Theory and Practice, 2013(9): 60-61.
[4] 杨一博,宗刚.再生资源的价格波动特征研究——基于HP滤波方法对废铜、废铝、废钢铁的分析[J].价格理论与实践, 2013(3):40-41.
YANG Y B, ZONG G. Price fluctuation characteristics of renewable resources: analysis of copper scrap, aluminum scrap and steel scrap based on HP filter method [J]. Price theory and practice, 2013 (3):41-42.
[5] JI Q, ZHANG H Y, FAN Y J E C, et al. Identification of global oil trade patterns: an empirical research based on complex network theory [J]. Energy Conversion Management, 2014, 85(9): 856-865.
[6] FAGIOLO G, MASTRORILLO M. Does human migration affect international trade? a complex-network perspective [J]. Plos One, 2014, 9(5): e97331.
[7] 韩梦玮, 李双琳. “一带一路”海洋能源产品贸易网络结构特征及社团分布研究[J]. 经济地理, 2020, 40 (10):110-119.
HAN M W,LI S L. Network characteristics and community structure of marine energy products trade among the countries along the belt and road[J]. Economic Geography, 2020, 40 (10):110-119.
[8] YANG Y, POON J P H, LIU Y, et al. Small and flat worlds: a complex network analysis of international trade in crude oil [J]. Energy, 2015, 93(93): 534-543.
[9] HAO X, AN H, HAI Q, et al. Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network [J]. Applied Energy, 2016, 162: 1515-1522.
[10] HAO X, AN H, SUN X, et al. The import competition relationship and intensity in the international iron ore trade: From network perspective [J]. Resources Policy, 2018, 57: 45-54.
[11] CHEN B, LI J S, WU X F, et al. Global energy flows embodied in international trade: a combination of environmentally extended input-output analysis and complex network analysis [J]. Applied Energy, 2018, 210: 98-107.
[12] DU R, WANG Y, DONG G, et al. A complex network perspective on interrelations and evolution features of international oil trade, 2002-2013 [J]. Applied Energy, 2017, 196: 142-151.
[13] LIU N, AN H, HAO X, et al. The stability of the international heat pump trade pattern based on complex networks analysis [J]. Applied Energy, 2017, 196: 100-117.
[14] 夏四友, 郝丽莎, 唐文敏,等. 复杂网络视角下世界石油流动的竞合态势演变及对中国石油合作的启示[J]. 自然资源学报, 2020, 35(11):89-107.
XIA S Y, HAO L S, TANG W M, et al. The evolution of competition and cooperation in world crude oil flows from the perspective of complex networks and its enlightenment to China's oil cooperation[J]. Journal of Natural Resources, 2020, 35(11):89-107.
[15] 张春燕.禁止洋垃圾入境释放哪些信号?[J].资源再生, 2017(5):13-15.
ZHANG C Y. What signals will be released to prohibit the entry of foreign garbage? [J]. Resource Recycling, 2017(5):13-15.
[16] 王天义.从“无废生活”到“无废城市”是艰巨的系统工程[J].资源再生, 2019(5):25-26.
WANG T Y. From “waste free life” to “waste free city” is an arduous systematic project [J]. Resource Recycling, 2017(5):13-15.
[17] 许宪春, 余航. 理解中美贸易不平衡:统计视角[J]. 经济学动态, 2018, 689(7):29-38.
XU X C, YU H. Understanding Sino-US trade imbalance: a statistical perspective [J]. Economic Dynamics, 2018, 689(7):29-38.
[18] WANG L, CHEN J, GONG P, et al. Land cover change detection with a cross‐correlogram spectral matching algorithm [J]. International Journal of Remote Sensing, 2009, 30(12):3259-3273.
[19] WATOREK M, DROZDZ S, OSWIECIMKA P, et al. Multifractal cross-correlations between the world oil and other financial markets in 2012-2017[J]. Energy Economics, 2019, 81:874-885.
[20] TILFANI O, FERREIRA P J, BOUKFAOUI M. Dynamic cross-correlation and dynamic contagion of stock markets: a sliding windows approach with the DCCA correlation coefficient[J]. Empirical Economics, 2021, 60(4):1127-1156.
[1] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[2] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[3] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[4] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[5] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[6] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[7] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[8] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[9] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[10] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[11] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[12] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[13] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[14] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[15] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed