Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 104-110    DOI: 10.13306/j.1672-3813.2022.03.013
  本期目录 | 过刊浏览 | 高级检索 |
基于概率优化的神经网络模型组合算法
李炎a, 李宪, 杨明业a, 孙国庆a
青岛大学 a.自动化学院;b.未来研究院,山东 青岛 266071
Neural Network Model Combination Algorithm Based on Probability Optimization
LI Yana, LI Xian, YANG Mingyea, SUN Guoqinga
a. Department of automation;b. Institude For Future, Qingdao University, Qindao 266071, China
全文: PDF(2189 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 高额的存储与计算成本限制了神经网络模型在低算力平台的应用,为提高神经网络模型的实用性,提出了两种组合优化算法,通过对多个轻型并行神经网络在连续时间窗口内的概率优化,在保证识别准确率的前提下显著降低了计算成本。为验证算法的可行性,以痛苦表情识别为对象,展开了系列对比实验。实验表明在保持相似准确率的前提下,其计算量相比传统深度学习算法极大降低,提高了神经网络的实用性,并极大降低了存储与计算成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李炎
李宪
杨明业
孙国庆
关键词 低计算成本低存储成本神经网络概率优化组合优化算法    
Abstract:The high storage and computing cost limits the application of neural network model in low computing power platform. To overcome the above shortages, we proposed two combined probability optimization algorithms to combine multiple light neural networks in a continuous time window, which can significantly reduce computing load under similar accuracy. The proposed scheme gives a general way for related algorithm on embedded hardware. To verify its effectiveness, a group of experiment was executed on the pain expression recognition with continuous peak values. In comparison to other conventional algorithms, the model complexity, computing load and storage of proposed scheme decrease obviously under consistent accuracy.
Key wordslow computing cost    low storage cost    neural network    probability optimization    combination
收稿日期: 2021-04-01      出版日期: 2022-10-12
ZTFLH:  TP183  
通讯作者: 李宪(1988-),男,山东济南人,博士,助教,主要研究方向为复杂系统建模、优化控制、无人系统和数据挖掘。   
作者简介: 李炎(1997-),男,山东济宁人,硕士研究生,主要研究方向为计算机视觉。
引用本文:   
李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
LI Yan, LI Xian, YANG Mingye, SUN Guoqing. Neural Network Model Combination Algorithm Based on Probability Optimization. Complex Systems and Complexity Science, 2022, 19(3): 104-110.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.013      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/104
[1] LEE J, WONG A. TimeConvNets: a deep time windowed convolution neural network design for real-Time video facial expression recognition[C]// 2020 17th Conference on Computer and Robot Vision (CRV). Los Alamitos: IEEE Computer Society, 2020: 9-16.
[2] MICHEL P, KALIOUBY R E. Real time facial expression recognition in video using support vector machines[C]// Fifth International Conference on Multimodal Interfaces. New York: Association for Computing Machinery, 2003: 258-264.
[3] BARGAL S A, BARSOUM E, FERRER C C, et al. Emotion recognition in the wild from videos using images[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York: Association for Computing Machinery, 2016: 433-436.
[4] ZHSNG T, ZHENG W, CUI Z, et al. Spatial-Temporal recurrent neural network for emotion recognition[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 839-847.
[5] AN F, LIU Z. Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM [J]. The Visual Computer, 2019, 36(3): 483-498.
[6] HASANI B, MAHOOR M H. Facial expression recognition using enhanced deep 3D convolutional neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2017: 2278-2288.
[7] RAJAN S, POONGODI C, Devaraj S, et al. A novel deep learning model for facial expression recognition based on maximum boosted CNN and LSTM [J]. IET Image Processing, 2020, 14(7): 1373-1381.
[8] EKMAN P. Constants across cultures in the face and emotion [J]. J Pers Soc Psychol, 1971, 17(2): 124-129.
[9] MEHRABIAN A. Communication without words [J]. University of East London, 1968, 24(4): 1084-5.
[10] WANG S, ECCKESTON C, KEOGH E. The time course of facial expression recognition using spatial frequency information: comparing pain and core emotions [J]. Journal of Pain, 2020, 22(2): 192-208.
[11] REICHERTS P, WIESER M J, GERDES A B M, et al. Electrocortical evidence for preferential processing of dynamic pain expressions compared to other emotional expressions [J]. Pain, 2012, 153(9): 1959-1964.
[12] LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Los Alamitos: IEEE Computer Society, 2010: 94-101.
[13] LYONS M, AKAMATSU S, KAMACHI M, et al. Coding Facial Expressions with Gabor Wavelets[C]//Third IEEE International Conference on Automatic Face and Gesture Recognition. Los Alamitos: IEEE Computer Society, 1998: 200-205.
[14] ABHINAV D, ROLAND G, SIMON L, et al. Collecting Large, Richly Annotated Facial-Expression Databases from Movies[J]. IEEE Multimedia, 2012, 19(3): 34-41.
[15] VIOLA P, JONES M J. Rapid object detection using a boosted cascade of simple features[C]// Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2001: 511-518.
[16] VIOLA P, JONES M J. Robust real-Time face detection [J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[17] 泰勒, 佩普劳, 希尔斯,等. 社会心理学[M]. 第10版.北京: 北京大学出版社, 2004: 89-90.
[18] HUANG T S. A fast two-Dimensional median filtering algorithm [J]. IEEE Trans on Acoustic Speech & Signal Processing, 1979, 27(1): 13-18.
[19] ARRIAGA O, VALDENEGRO-TORO M, PLÖGER P. Real-time convolutional neural networks for emotion and gender classification[DB/OL]. [2019-12-16]. https://arxiv.org/pdf/1710.07557.pdf.
[20] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// European Conference on Computer Vision. Berlin: Springer-Verlag Berlin, 2018: 122-138.
[21] SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 4510-4520.
[1] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
[2] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[3] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed