Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 52-59    DOI: 10.13306/j.1672-3813.2023.02.007
  本期目录 | 过刊浏览 | 高级检索 |
考虑多方利益的大规模共享停车匹配优化策略
王震邦, 宋运忠
河南理工大学电气工程与自动化学院,河南 焦作 454003
A Massive Shared Parking Matching Optimization Strategy Considering the Interests of Multiple Parties
WANG Zhenbang, SONG Yunzhong
School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China
全文: PDF(1928 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为有效缓解大规模停车时的停车乱、停车难问题,围绕停车费用、排队时间以及均衡多个停车场之间的停车需求,构建兼顾多方利益凸优化模型。首先,利用匹配博弈推导出最小化停车费用的稳定双边匹配;然后,同时考虑多方利益来扩展研究,构建的数学模型为凸优化问题,使用交替方向乘子法(ADMM)分布式求解;最后,仿真结果表明基于ADMM分布式优化模型与匹配博弈算法和贪心算法相比,可以满足多方利益,从隐私保护、计算时间与数据传递量等方面分析验证了ADMM分布式优化模型比集中式优化模型更适用于大规模共享停车匹配,并分析验证了考虑多方利益的必要性与权重系数对计算结果的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王震邦
宋运忠
关键词 大规模停车匹配多方利益匹配博弈交替方向乘子法    
Abstract:In order to effectively alleviate the problem of parking chaos and difficult parking during massive parking, this paper builds a convex optimization model that takes into account the interests of multiple parties, focusing on parking costs, queuing time and balancing the parking demand among multiple parking lots. First, a stable bilateral matching that minimizes parking fees is derived by using a matching game; then, the research is extended considering the interests of multiple parties at the same time, and the mathematical model constructed is a convex optimization problem, which is solved by the alternating direction multiplier method (ADMM) distributed solution. Finally, the simulation results show that the distributed optimization model based on ADMM can meet the interests of multiple parties compared with the matching game algorithm and the greedy algorithm. It is verified that the ADMM distributed optimization model is more efficient than the centralized optimization model from the aspects of privacy protection, computing time and data transfer volume. It is suitable for massive shared parking matching, and the necessity of considering the interests of multiple parties and the influence of weight coefficients on the calculation results are analyzed and verified.
Key wordsmassive parking matching    multi-party interests    matching game    alternating direction multiplier method
收稿日期: 2021-09-27      出版日期: 2023-07-21
ZTFLH:  TP273.1  
  U491.7  
基金资助:国家自然科学基金(61340041,61374079);河南省自然科学基金(182300410112)
通讯作者: 宋运忠(1968-),男,河南民权人,博士,教授,主要研究方向为复杂系统的分析与控制。   
作者简介: 王震邦(1997-),男,河南郑州人,硕士研究生,主要研究方向为复杂系统建模与控制。
引用本文:   
王震邦, 宋运忠. 考虑多方利益的大规模共享停车匹配优化策略[J]. 复杂系统与复杂性科学, 2023, 20(2): 52-59.
WANG Zhenbang, SONG Yunzhong. A Massive Shared Parking Matching Optimization Strategy Considering the Interests of Multiple Parties. Complex Systems and Complexity Science, 2023, 20(2): 52-59.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.007      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/52
[1] SHOUP D C. Cruising for parking[J]. Transport Policy, 2006, 13(6): 479-486.
[2] KONG T R, XU S, CHENG M, et al. Iot-enabled parking space sharing and allocation mechanisms[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(4): 1654-1664.
[3] BOCK F, MARTINO S D, ORIGLIA A. Smart parking: using a crowd of taxis to sense on-street parking space availability[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 496-508.
[4] WU M, JIANG H, TAN C A. Automated parking space allocation during transition with both human-operated and autonomous vehicles[J]. Applied Sciences, 2021, 11(2): 855.
[5] KOTB A, SHEN Y, ZHU X, et al.IParker—a new smart car-parking system based on dynamic resource allocation and pricing[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2637-2647.
[6] XU Y, ALFONSETTI E, Weeraddana P C, et al. A semidistributed approach for the feasible min-max fair agent-assignment problem with privacy guarantees[J]. IEEE Transactions on Control of Network Systems, 2016, 5(1): 333-344.
[7] 卢凯, 林茂伟, 邓兴栋, 等. 停车总成本最小的停车位动态匹配与诱导模型[J]. 华南理工大学学报(自然科学版), 2018, 46(9): 82-91,98.
LU K, LIN M W, DENG X D, et al. A dynamic allocation and guidance model for parking spaces with minimum total parking costs[J]. Journal of South China University of Technology(Natural Science Edition) , 2018, 46(9): 82-91,98.
[8] LIN J, CHEN S Y, CHANG C Y, et al. SPA: smart parking algorithm based on driver behavior and parking traffic predictions[J]. IEEE Access, 2019, 7, 34275-34288.
[9] SCHLOTE A, KING C, CRISOSTOMI E, et al. Delay-tolerant stochastic algorithms for parking space assignment[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 1922-1935.
[10] KIM O T T, TRAN N H,PHAM C, et al. Parking assignment: minimizing parking expenses and balancing parking demand among multiple parking lots[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1320-1331.
[11] 林小围, 周晶, 卢珂. 私家车位共享系统的车位动态预约与分配[J]. 系统工程理论与实践, 2018, 38(11): 189-199.
LIN X W, ZHOU J, LU K. Dynamic reservation and allocation in private parking slot sharing system[J]. Systems Engineering-Theory & Practice, 2018, 38(11): 189-199.
[12] GARRA R, MARTÍNEZ S, SEBÉ F. A privacy-preserving pay-by-phone parking system[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5697-5706.
[13] LIU P, XU B, DAI G, et al. MDP: minimum delay hot-spot parking[J]. Journal of Network and Computer Applications, 2017, 87: 210-222.
[14] LIU H, QIU T, ZHOU X, et al. Parking-area-assisted spider-web routing protocol for emergency data in urbanVANET[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 971-982.
[15] LU R, LIN X, ZHU H, et al. Spark: a new VANET-based smart parking scheme for large parking lots[C]// Rio de Janeiro, Brazil: IEEE Infocom, 2009,2009.
[16] GALED, SHAPLEY L S. College admissions and the stability of marriage[J]. American Mathematical Monthly, 1962, 69(1): 9-15.
[17] ROTH A E. Deferred acceptance algorithms: history, theory, practice, and openquestions[J]. International Journal of Game Theory, 2008, 36(3): 537-569.
[18] 李伟钢, 唐朝生, Antonio C de A Junior, 等. 航空交通协同决策方法研究[J]. 复杂系统与复杂性科学, 2015, 12(2): 46-52.
LI W G, TANG C S, ANTONIO C DE A J, et al. A study on collaborative decision making in air transportation[J]. Complex Systems and Complexity Science, 2015, 12(2): 46-52.
[19] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3(1): 1-122.
[20] 潘振宁, 余涛, 王克英. 考虑多方主体利益的大规模电动汽车分布式实时协同优化[J]. 中国电机工程学报, 2019, 39(12): 3528-3541.
PAN Z N,YU T,WANG K Y. Decentralized coordinated dispatch for real-time optimization of massive electric vehicles considering various interests[J]. Proceedings of the CSEE, 2019, 39(12): 3528-3541.
[1] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[2] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[3] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[4] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed