Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 27-34    DOI: 10.13306/j.1672-3813.2023.03.004
  本期目录 | 过刊浏览 | 高级检索 |
基于复合粗糙集的异构属性患者社区划分模型
刘晨曦1, 孙秉珍1, 楚晓丽2, 祁畅1,3
1.西安电子科技大学经济与管理学院,西安 710071;
2.广州中医药大学第二附属医院省部共建中医湿症国家重点实验室,广州 510120;
3.兰州交通大学大学生心理健康教育服务中心,兰州 730070
Community Partition Model of Patients with Heterogeneous Attributes Based on Composite Rough Sets
LIU Chenxi1, SUN Bingzhen1, CHU Xiaoli2, QI Chang1,3
1. School of Economics and Management, Xidian University, Xi’an 710071, China;
2. State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China;
3. College Students Mental Health Education Service Center, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(1566 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 社区划分是网络研究中的重要组成部分,基于医疗数据对类风湿关节炎患者进行社区划分能够有效提升临床医疗决策的准确性。考虑到社区划分过程中可能会存在患者属性异构及相关性问题,首先基于复合粗糙集理论实现对患者异构属性的有效处理,其次将复合粗糙集理论与 louvain 算法相融合,构建出基于异构属性节点的社区划分模型。通过采用临床真实数据集及经典网络数据集对本文构建的模型进行实验分析,验证了本文模型能够取得模块值较大的社区结构,实现将不同疾病活动程度的患者划分到不同社区内,从而提升患者疾病活动程度评估的有效性和准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晨曦
孙秉珍
楚晓丽
祁畅
关键词 异构属性网络构建复合粗糙集社区划分louvain算法    
Abstract:Community partition is an important part of network research. Community partition of patients with Rheumatoid Arthritis based on medical data can effectively improve the accuracy of clinical medical decision-making. Considering that there may be problems of heterogeneity and correlation of patients′ attributes in the process of community partition, this paper firstly classifies patients based on composite rough sets theory to effectively deal with heterogeneous attributes. Secondly, the rough sets theory and the louvain algorithm are combined to build a community partition model of patients with heterogeneous attributes. By using the clinical real dataset and the classical network dataset, it is verified that the proposed model can obtain the community structure with large module value, and the realize the division of patients with different disease activity levels into different communities, so as to improve the effectiveness and accuracy of the assessment of patients′ disease activity level.
Key wordsheterogeneous attributes    network construction    composite rough set    community partition    Louvain algorithm
收稿日期: 2022-03-04      出版日期: 2023-10-08
ZTFLH:  TP399  
基金资助:国家自然科学基金(72071152);陕西省杰出青年基金项目(2023JCJQ11);西安市软科学研究项目(2022RKYJ0030);陕西省高校青年创新团队项目(2019);广州市重点研发计划(202206010101);广东省中医院中医药科学技术研究专项(院内专项)(2022);广东省自然科学基金(2022);广东省新黄埔中医药联合创新研究院项目(2022);甘肃省哲学社会科学规划项目(2021YB059)
通讯作者: 楚晓丽(1985),女,山东阳谷人,博士,主要研究方向为中医药数据挖掘、智能决策等。   
作者简介: 刘晨曦(1999),女,山西运城人,硕士研究生,主要研究方向为数据挖掘与智能决策。
引用本文:   
刘晨曦, 孙秉珍, 楚晓丽, 祁畅. 基于复合粗糙集的异构属性患者社区划分模型[J]. 复杂系统与复杂性科学, 2023, 20(3): 27-34.
LIU Chenxi, SUN Bingzhen, CHU Xiaoli, QI Chang. Community Partition Model of Patients with Heterogeneous Attributes Based on Composite Rough Sets. Complex Systems and Complexity Science, 2023, 20(3): 27-34.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.004      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/27
[1] HU J J, WANG Z Q, CHEN J Q, et al. A community partitioning algorithm based on network enhancement[J]. Connection Science, 2021, 33(1): 4261.
[2] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): 10008.
[3] NEWMAN M, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 26113.
[4] PONS P, LATAPY M. Computing Communities in Large Networks Using Random Walks[M]. Berlin, Heidelberg: Springer, 2005: 284 293.
[5] 郑文萍, 车晨浩, 钱宇华, 等. 一种基于标签传播的两阶段社区发现算法 [J]. 计算机研究与发展, 2018, 55(9): 19591971.
ZHENG W P, CHE C H, QIAN Y H, et al. A two-stage community discovery algorithm based on tag propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 19591971.
[6] MENG F R, RUI X B, WANG Z X, et al. Coupled node similarity learning for community detection in attributed networks[J]. Entropy, 2018, 20(6): 471.
[7] CHAI B F, YU J, JIA C Y, et al. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection[J]. Physical Review E Statistical Nonlinear, 2013, 88(1): 012807.
[8] XU Z Q, KE Y P, WANG Y, et al. GBAGC: a general bayesian framework for attributed graph clustering[J]. ACM Transactions on Knowledge Discovery From Data, 2014,9(1):143.
[9] XIN Y, YANG J, XIE Z Q. A semantic overlapping community detection algorithm in social networks based on random walk[J]. Journal of Computer Research and Development. 2015, 52(2): 499511.
[10] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 8590.
YANG X B, CHENG C X, WANG Z W. LFM community detection algorithm based on vertex similarity[J]. Complex Systems and Complexity Science, 2017, 14(3): 8590.
[11] 赵卫绩, 张凤斌, 刘井莲. 一种基于节点嵌入表示 学习的社区搜索算法 [J]. 控制与决策, 2021, 36 (8):19701976.
ZHAO W J, ZHANG F B, LIU J L. A community search algorithm based on node embedded representation learning[J]. Control and Decision, 2021, 36(8): 19701976.
[12] 钟丽君, 宾晟, 袁敏, 等. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019,16(2): 3140.
ZHONG L J,BIN S, YUAN M, et al. Multi-functional complex network model and its application[J]. Complex Systems and Complexity Science, 2019, 16(2): 3140.
[13] STEINHAEUSER K, CHAWLA N V. Community Detection in a Large Real-World Social Network[M]. Berlin: Springer, 2008: 168175.
[14] PAWLAK Z. Rough sets[J]. Information Sciences. 1982, 11(5): 341356.
[15] HU Q U, YU D R, LIU J F, et al. Neighborhood roughest based heterogeneous feature subset selection[J]. Information Sciences, 2008,178(18): 35773594.
[16] ZHANG J B, LI T R, CHEN H M. Composite rough sets for dynamic data mining[J]. Information Sciences, 2014, 257(2): 81100.
[17] 方良春, 孙哲, 杨凯. 类风湿关节炎中 RF、抗 CCP 抗 体、CRP、ESR 的相关性分析 [J]. 医药前沿, 2016, 6(5):181182.
FANG C L, SUN Z, YANG K. Correlation analysis of RF, anti-CCP antibody, CRP and ESR in rheumatoid arthritis[J]. Journal of Frontiers of Medicine, 2016, 6(5): 181182.
[18] MEO P D, FERRARA E, FIUMARA G, et al. Generalized Louvain method for community detection in large networks[C]. Intelligent Systems Design and Applications. Cordoba: IEEE, 2011:8893.
[19] 张萌, 孙秉珍, 王婷, 等. 融合粗糙集与 GRA 的异构信息多准则三支推荐及其在医疗推荐中的应用[J]. 控制与决策, 2022,37(7):18831893.
ZHANG M, SUN B Z, WANG T,et al. Multi-criteria three-way recommendation of heterogeneous information based on rough set and GRA and its application in medical recommendation[J]. Control and Decision, 2022,37(7):18831893.
[20] 王效俐, 刘潇, 苏强. 邻域粗糙集融合贝叶斯神经网络在医疗决策中的应用研究[J]. 工业工程与管理, 2016, 21(5): 141147.
WANG X L, LIU X, SU Q. Research on application of neighborhood rough set fusion bayesian neural network in medical decision-making[J]. Industrial Engineering and Management, 2016, 21(5): 141147.
[21] 刘洋, 张卓, 周清雷. 医疗健康数据的模糊粗糙集规则挖掘方法研究[J].计算机科学,2014,41(12):164 167.
LIU Y, ZHANG Z, ZHOU Q L. Research on fuzzy rough sets based rule induction methods for healthcare data[J]. Computer Science, 2014, 41(12): 164167.
[22] LITTLEJOHN E A, MONRAD S U. Early diagnosis and treatment of rheumatoid arthritis[J]. Prim Care, 2018, 45(2): 237255.
[23] JOHNSON T M, MICHAUD K, ENGLAND B R. Measures of rheumatoid arthritis disease activity[J]. Arthritis Care and Research, 2020, 72(10): 426.
[1] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
[2] 杨忠保, 楚杨杰, 洪叶, 江登英. 量子粒子群优化社区发现方法[J]. 复杂系统与复杂性科学, 2019, 16(1): 36-42.
[3] 肖婧, 张永建, 许小可. 复杂网络模糊重叠社区检测研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 8-29.
[4] 李永宁, 吴晔, 张伦. 动态社团发现研究综述[J]. 复杂系统与复杂性科学, 2021, 18(2): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed