Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (4): 10-17    DOI: 10.13306/j.1672-3813.2023.04.002
  本期目录 | 过刊浏览 | 高级检索 |
展示网络重叠社团结构的可视化布局算法
张铭娜1, 肖婧1, 许小可1,2
1.大连民族大学信息与通信工程学院,辽宁 大连 116600;
2.北京师范大学 a.计算传播学研究中心,广东 珠海 519085; b.新闻传播学院,北京 100875
A Visual Layout Algorithm for Showing Overlapping Community Structure of Networks
ZHANG Mingna1, XIAO Jing1, XU Xiaoke1,2
1. College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China;
2. a.Computational Communication Research Center, Zhuhai 519085, China; b.School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
全文: PDF(3998 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 可视化技术可以用来对社团结构进行有效分析,帮助用户理解网络拓扑结构,从中挖掘出隐含信息,但是传统的网络可视化布局算法没有考虑重叠社团中节点的重叠特性。针对上述问题,先采用已有的重叠社团检测算法进行社团划分,然后对其硬划分并根据隶属矩阵加权求和确定节点位置,最后对重叠节点进行精确布局展示重叠社团结构。可视化结果表明,该算法可以直观展示重叠社团结构,突出重叠节点以及节点所属社团。同时,实验采用节点偏差、边长偏差、点分布方差等指标验证本算法可以降低节点偏差和点分布方差。研究可满足复杂网络重叠社团结构的可视化需求,为理解复杂社团的结构和功能提供一定的帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铭娜
肖婧
许小可
关键词 社团结构力导引布局模糊重叠离散重叠    
Abstract:Visualization technology can be used to effectively analyze the community structure, help users to understand the network topology, and dig out the hidden information from it, but the traditional network visualization layout algorithm does not consider the overlapping characteristics of nodes in the overlapping communities. Aiming at above problems, firstly, this paper uses the existing overlapping community detection algorithm to divide the community, and then hard partition and determine the node position according to the weighted summation of the membership matrix. Finally, the overlapping nodes are accurately laid out to display the overlapping community structure. The visual results demonstrate that the algorithm can visually display the overlapping community structure, highlight the overlapping nodes and the communities to which the nodes belong. At the same time, the experiment uses indicators such as node deviation, edge length deviation, and point distribution variance to verify that the algorithm can reduce node deviation and point distribution variance. This study can meet the visualization needs of overlapping community structures in complex networks, and can provide certain help for understanding the structure and functions of complex communities.
Key wordscommunity structure    force-directed layout    fuzzy overlap    crisp overlap
收稿日期: 2022-06-25      出版日期: 2023-12-28
ZTFLH:  TP391  
基金资助:国家自然科学基金(62173065);辽宁省自然科学基金(2020-MZLH-22)
通讯作者: 许小可(1979-),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 张铭娜(1999-),女,山西长治人,硕士研究生,主要研究方向为网络可视化。
引用本文:   
张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
ZHANG Mingna, XIAO Jing, XU Xiaoke. A Visual Layout Algorithm for Showing Overlapping Community Structure of Networks. Complex Systems and Complexity Science, 2023, 20(4): 10-17.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.04.002      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I4/10
[1] EADES P. A heuristic for graph drawing[J]. Congressus Numerantium, 1984, 42:149-160.
[2] KAMADA T, KAWAI S. An algorithm for drawing general undirected graphs[J]. Information Processing Letters, 1989, 31(1):7-15.
[3] FRUCHTERMAN T M J, REINGOLD E M. Graph drawing by force-directed placement[J]. Software Practice & Experience, 2010, 21(11):1129-1164.
[4] NEWMAN M E J, PEIXOTO T P. Generalized communities in networks[J]. Physical Review Letters, 2015, 115(8):088701.
[5] 周锐,王桂娟,邓皓天,等. 复杂网络聚类特征层次布局算法[J]. 计算机应用研究, 2022, 39 (2):479-484.
ZHOU R, WANG G J, DENG H T, et al. Complex network clustering feature multi-level layout algorithm[J]. Computer Application Research, 2022, 39 (2): 479-484.
[6] 邓皓天. 大规模社会网络布局算法研究[D]. 绵阳:西南科技大学, 2021.
DENG H T. Research on layout algorithms large-scale social networks[D]. Mianyang: Southwest University of Science and Technology, 2021.
[7] DAVIDSON R. Drawing graphs nicely using simulated annealing[J]. Acm Trans Graphics, 1996, 15(4):301-331.
[8] 朱志良,林森,崔坤,等. 基于复杂网络社区划分的网络拓扑结构可视化布局算法[J]. 计算机辅助设计与图形学学报, 2011, 23(11):1808-1815.
ZHU Z L, LIN S, CUI K, et al. Network topology layout algorithm based on community detection of complex networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23 (11): 1808-1815.
[9] 吴渝,李藻旭,李红波,等. 展示复杂网络社团结构的社团引力导引的布局算法[J]. 计算机辅助设计与图形学学报, 2015, 27(8):1460-1467.
WU Y, LI Z X, LI H B, et al. A community-cravity-directed algorithm for showing community structure of complex networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27 (8): 1460-1467.
[10] ZHONG S, LIN S, XU G, et al. The expansibility research of K-Means algorithm under the GPU[C]// Proceedings of the International Conference on Software Engineering and Service Science. Beijing: IEEE, 2017.
[11] 周弦,黄廷磊,梁霄. 基于社团划分的网络聚类布局算法[J]. 计算机与现代化, 2017(12):1-5,11.
ZHOU X, HUANG T L, LIANG X. Network clustering layout algorithm based on detecting community structure[J]. Computer and Modernization, 2017 (12): 1-5,11.
[12] HUANG Z, WU J, ZHU W, et al. Visualizing complex networks by leveraging community structures[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565(1):125506.
[13] 肖婧,张永建,许小可. 复杂网络模糊重叠社区检测研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3):8-29.
XIAO J, ZHANG Y J, XU X K. Research progress of fuzzy overlapping community detection in complex networks[J]. Complex Systems and Complexity Science, 2017, 14 (3): 8-29.
[14] KUNDU S, PAL S K. Fuzzy-rough community in social networks[J]. Pattern Recognition Letters, 2015, 67(P2):145-152.
[15] VEHLOW C, REINHARDT T, WEISKOPF D. Visualizing fuzzy overlapping communities in networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2486-2495.
[16] PARK C H, CHANG J H. Robust TOA source localisation algorithm using prior location [J]. IET Radar, Sonar & Navigation, 2019, 13(3): 384-391.
[17] 任淑霞,吴涛,张书博. 嵌入社区半径的力引导与径向树混合布局算法[J]. 四川大学学报(自然科学版), 2020, 57(1):73-81.
REN S X, WU T, ZHANG S B. Community radius embedded in force-directed and radial tree hybrid layout algorithm[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57 (1): 73-81.
[18] 孙扬, 蒋远翔, 赵翔,等. 网络可视化研究综述[J]. 计算机科学, 2010, 37(2):12-18.
SUN Y, JIANG Y X, ZHAO Xiang, et al. Survey on the research of network visualization [J]. Computer Science, 2010, 37(2): 12-18.
[19] 李海峰. 图布局力导引算法的研究与实现[D]. 镇江:江苏大学, 2012.
LI H F. Research and implementation of graph layout force-directed algorithm[D]. Zhenjiang: Jiangsu University, 2012.
[1] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[2] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[3] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
[4] 肖婧, 张永建, 许小可. 复杂网络模糊重叠社区检测研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 8-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed