Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 66-73    DOI: 10.13306/j.1672-3813.2024.01.009
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
网络视角下航空公司竞争态势及影响因素研究
汪瑜, 雷迪, 于娇娇, 温国兵
中国民用航空飞行学院经济与管理学院,四川 广汉 618307
On the Competitive Situation of Airlines and the Influencing Factors from the Perspective of Network
WANG Yu, LEI Di, YU Jiaojiao, WEN Guobing
School of Economics and Management, Civil Aviation FlightUniversity of China, Guanghan 618307, China
全文: PDF(1584 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为剖析疫情时期中国国内主要客运航空公司竞争格局和竞争优势的影响因素,利用TOPSIS-熵值法和修正Huff模型量化航空公司在航线上的竞争优势强度,构建基于优势强度的航空公司-航线赋权二分网络,从网络的视角对航空公司竞争优势市场划分及其静态特征进行研究,利用Tobit回归模型剖析竞争优势的影响因素。研究表明:在疫情时期航空公司多市场接触程度较低,三大航空公司竞争优势明显,其优势在城市分布上差异巨大,主要集中在其基地城市。HU、3U等航空公司在市场竞争中优势不明显,更多表现为竞争且主要围绕沿海二线城市展开;航空公司竞争优势受到多因素共同制约,疫情时期收益更多表示成本控制的能力,低成本航空公司9C相较HU、3C等航空公司更具优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪瑜
雷迪
于娇娇
温国兵
关键词 竞争态势航空公司-航线赋权二分网络TOPSIS-熵值法修正Huff模型社团Tobit 模型    
Abstract:In order to analyze the competitive pattern and factors influencing the competitive advantage of China's major domestic passenger airlines during the epidemic period, we use the TOPSIS-Entropy method and a modified Huff model to quantify the competitive advantage strength of airlines on routes, construct a weighted bipartite network of airlines-routes empowerment based on advantage strength, and study the market segmentation of airlines' competitive advantage and its static characteristics from the perspective of network. The Tobit regression model is used to analyze the factors influencing competitive advantage. The study shows that during the epidemic period, the airlines have a low degree of multi-market exposure, and the three major airlines have obvious competitive advantages, which vary greatly in city distribution and are mainly concentrated in their base cities; HU, 3U and other airlines have less obvious advantages in market competition and are more competitive and mainly around the second-tier coastal cities. The competitive advantage of airlines is constrained by a combination of factors, and the revenue during the epidemic period is more indicative of the ability to control cost.
Key wordscompetition    airline-airline weighted bipartite network    TOPSIS-Entropy method    modified Huff model    community    Tobit model
收稿日期: 2022-08-25      出版日期: 2024-04-26
ZTFLH:  F560.5  
基金资助:国家自然科学基金民航联合基金重点项目(U2033213);中国民航飞行学院研究所计划项目(JG2022-21)
通讯作者: 雷迪(1997-),男,四川绵阳人,硕士研究生,主要研究方向为民航运输。   
作者简介: 汪瑜(1983-),男,江苏常熟人,博士,教授,主要研究方向为航空运输系统分析及运营优化,航空运输系统决策智能化等。
引用本文:   
汪瑜, 雷迪, 于娇娇, 温国兵. 网络视角下航空公司竞争态势及影响因素研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 66-73.
WANG Yu, LEI Di, YU Jiaojiao, WEN Guobing. On the Competitive Situation of Airlines and the Influencing Factors from the Perspective of Network[J]. Complex Systems and Complexity Science, 2024, 21(1): 66-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.009      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/66
[1] 陆锋,萧世伦,陈洁,等.中国民航客运(国内)空间格局与竞争态势分析[J].地球信息科学,2005,4(4): 43-49.
LU F,XIAO S L,CHEN J, et al. Analysis of the spatial pattern and competitive situation of Chinese civil aviation passenger transportation (domestic)[J]. Earth Information Science,2005,4(4): 43-49.
[2] 李菲. 我国民航运输产业组织研究[D].陕西:长安大学,2005.
LI F. Study on the Organization of Civil Aviation Transportation Industry in China [D].Shaanxi:Chang'an University,2005.
[3] DENNIS N, PJTFIELD D. A tale of two cities:the impact of airline mergers and consolidation at London and New York[J].Transportation Research Record,2018,2672(23):1-7.
[4] 胡进.“一带一路”沿线市场大陆航空公司新竞争态势研究[J].空运商务,2016(5):11-15.
HU J.Research on the new competitive situation of mainland airlines in the marketalong the "belt and road"[J].Air Transport Business,2016(5):11-15.
[5] 杨建梅,陆履平,谢王丹.广州软件企业竞争关系的复杂网络分析[C].第二届全国复杂动态网络学术论坛.北京:中国高等科学技术中心,2005:630-632.
YANG J M,LU L P,XIE W D. Complex network analysis of competitive relationships of software enterprises in Guangzhou[C].Proceedings of the Second National Academic Forum on Complex Dynamic Networks. Beijing: China Center of Advanced Science and Technology, 2005:630-632.
[6] 冯建勇.基于复杂网络的中国M航空公司竞争策略研究[D].广东:华南理工大学,2009.
FENG J Y. Research on the competitive strategy of Chinese M airlines based on complex networks[D].Guangdong:South China University of Technology, 2009.
[7] SVEN M. A metric to assess the competitive position of airlines and airline groups in the intra-European air transport market[J].Research in Transportation Economics,2018,4(5):65-73.
[8] 安静.基于复杂网络的中国矿业上市公司竞争与合作关系研究[D].北京:中国地质大学,2014.
AN J. A study on the competitive and cooperative relationship of Chinese mining listed companies based on complex networks[D].Beijing:China University of Geosciences,2014.
[9] 于剑, 朱迪, 陈俣秀, 等. 基于熵值TOPSIS模型的网络枢纽型航空公司竞争力评价[J].生产力研究,2021,35(9):67-73.
YU J, ZHU D, CHEN Y X, et al.Competitiveness evaluation of network hub-based airlines based on entropy TOPSIS model[J].Productivity Research,2021,35(9):67-73.
[10] 孙新宪,孙莉云.国内外航空公司竞争力综合评价研究[J].综合运输,2016,38(4):34-38.
SUN X X,SUN L Y. Acomprehensive evaluation study on the competitiveness of domestic and foreign airlines[J].Comprehensive Transportation,2016,38(4):34-38.
[11] WU C, ZHANG X Y, YEH I C,et al.Evaluating competitiveness using fuzzy analytic hierarchy process—a case study of Chinese airlines[J].Journal of Advanced Transportation,2013,47(7):619-634.
[12] DELBARI S A, NG S I, AZIZ Y A,et al.An investigation of key competitiveness indicators and drivers of full-service airlines using Delphi and AHP techniques[J].Journal of Air Transport Management,2016,52(3):23-34.
[13] 田利军,谢箷.基于因子分析法的航空公司核心竞争力评价[J].财会月刊,2013,42(18):72-75.
TIAN L J, XIE S. Evaluation of airline core competitiveness based on factor analysis[J]. Finance and Accounting Monthly,2013,42(18):72-75.
[14] 黄凌波.粤港澳大湾区港口竞合关系研究[D].广东:华南理工大学,2020.
HUANG L B. Study on the competitive relationship of ports in Guangdong-Hong Kong-Macao Greater Bay Area [D].Guangdong:South China University of Technology,2020.
[15] HAN J Y,LI Y H.Modification of huff model and its application in county market a case of pharmacy siting in Huang hua City,Hebei Province[C]∥International Conference on Services Science,Chongqing,China:IEEE,2016:63-67.
[16] NEWMAN M J. Fast algorithm for detecting community structure in networks[J].Physical Review E,2004 ,69(6):1-5.
[17] BECKETT S J. Improved community detection in weighted bipartite networks[J].Royal Society Open Science,2016,3 (1):140536.
[18] LAASSEM B, IDARROU A, BOUJLALEB L, et al. Label propagation algorithm for community detection based on Coulomb's law[J].Physical A:Statistical Mechanics and Its Applications,2022,593(9):1-5.
[19] YANG H L, ZHANG Y, ZHANG J, et al. Event-based community detection in micro-blog networks[J]. International Journal of Perform Ability Engineering,2021,17(1):60-73.
[20] ZHANG Y, LIU Y G, LI Q Q, et al. LILPA: a label importance based label propagation algorithm for community detection with application to core drug discovery[J].Neuro Computing,2020,413(6):107-133.
[21] 李辉婕,柯今朝,朱玲娟,等.江西省种粮大户应对气象灾害适应性行为经济绩效研究——基于DEA-Tobit模型[J].生物灾害科学,2022,45(1):95-102.
LI H J, KE J Z, ZHU L J, et al.Study on the economic performance of adaptive behavior of large grain farmers in Jiangxi Province in response to meteorological disasters—based on DEA-Tobit model[J].Biohazard Science,2022,45(1):95-102.
[1] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[2] 李永宁, 吴晔, 张伦. 动态社团发现研究综述[J]. 复杂系统与复杂性科学, 2021, 18(2): 1-8.
[3] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[4] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[5] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
[6] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed