Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 90-95    DOI: 10.13306/j.1672-3813.2016.04.012
  本期目录 | 过刊浏览 | 高级检索 |
基于局域交互和全局广播的创新传播模型研究
于明亮1,2a, 韩景倜1, 林坚洪2b, 刘建国2b
1.上海财经大学信息管理与工程学院,上海 200433;
2.上海理工大学 a.经济管理实验中心,b.复杂系统科学研究中心,上海 200093
Innovation Diffusion Model Based on the Local Interaction and Global Broadcasting
YU Mingliang1,2a, HAN Jingti1, LIN Jianhong2b, LIU Jianguo2b
1. School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433,China;
2. a. Labs of Economics and Management, b. Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093,China
全文: PDF(907 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑公共媒体对创新传播的影响,本文提出基于网络局域交互和全局广播的创新传播模型,该模型既考虑了创新传播过程中邻居节点之间的交互作用,也考虑了公共媒体对创新传播的影响。实证网络数据集上的仿真结果表明在公共媒体宣传力度有限的情况下,局域交互特性对创新传播具有重要影响。进一步的分析表明,结合网络结构和创新传播机制的节点影响力评价指标可以准确地对创新传播中的节点影响力进行排序,相对于度、紧密度等方法,该方法的Kendall's Tau可以提高39.19%,35.61%和33.03%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于明亮
韩景倜
林坚洪
刘建国
关键词 创新传播局域交互全局广播节点影响力    
Abstract:In this paper, we present an innovation diffusion model based on the local interaction and global broadcasting, which considers both the interaction between each node and the influence of the public media during the innovation spreading process. The experimental results show that as the effect of the global broadcasting is limited, the local interaction relationships would play an important role in the innovation diffusion. Furthermore, the simulation results on for real networks show that under the limited influence of public media, the improved method which integrates the network structure and innovation diffusion process can evaluate the node influence in innovation diffusion accurately. Comparing with degree, closeness and K-shell method, the largest improved ratio could reach 39.19%, 35.61% and 33.03% respectively.
Key wordsinnovation diffusion    local interaction    global broadcasting    node influence
收稿日期: 2015-09-08      出版日期: 2025-02-25
ZTFLH:  N941  
基金资助:国家自然科学基金(71171136,71271126,61374177); 高校博士点基金(20120078110002);上海市东方学者特聘教授项目和上海市曙光学者项目(14SG42)。
作者简介: 于明亮(1979-),男,山东青岛人,博士研究生,主要研究方向为在线社会网络创新传播。
引用本文:   
于明亮, 韩景倜, 林坚洪, 刘建国. 基于局域交互和全局广播的创新传播模型研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 90-95.
YU Mingliang, HAN Jingti, LIN Jianhong, LIU Jianguo. Innovation Diffusion Model Based on the Local Interaction and Global Broadcasting[J]. Complex Systems and Complexity Science, 2016, 13(4): 90-95.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.012      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/90
[1] Rogers E M. Diffusion of innovations[M].New York:Free Press, 1995.
[2] 李翔,刘宗华, 汪秉宏.网络传播动力学[J].复杂系统与复杂性科学, 2010,7(2):33-37.
Li Xiang, Liu Zonghua, Wang Binghong. On spreading dynamics on networks[J].Complex Systems and Complexity Science,2010,7(2):33-37.
[3] 黄玮强, 庄新田.基于随机网络的创新扩散研究[J].管理学报, 2007,4(5):622-628.
Huang Weiqiang, Zhuang Xintian. Study of innovation diffusion by using stochastic network[J].Chinese Journal of Management,2007,4(5):622-628.
[4] 段文琦,陈忠, 惠淑敏.基于复杂网络的网络市场新产品扩散:采用网络和初始条件的作用[J].系统工程, 2007,25(5):15-19.
Duan Wenqi,Chen Zhong, Hui Shumin. Diffusion of new products in network markets based on complex networks:the role of adoption network and initial conditions[J].Systems Engineering,2007,25(5):15-19.
[5] 张晓军, 李仕明, 何铮.社会网络关系密度对创新扩散的影响[J].系统工程, 2009,27(1):92-97.
Zhang Xiaojun,Li Shiming, He Zheng. Impact of social network density on innovation diffusion[J].Systems Engineering,2009,27(1):92-97.
[6] 周琪萍, 徐迪, 杨芳.基于Agent的创新扩散研究[J].软科学, 2014,28(1):6-10.
Zhou Qiping, Xu Di,Yang Fang. Study of the agent-based mechanism of innovation diffusion[J].Soft Science,2014,28(1):6-10.
[7] Pegoretti G, Rentocchini F, Marzetti G V. An agent-based model of innovation diffusion: network structure and coexistence under different information regimes[J].Journal of Economic Interaction and Coordination, 2012,7(2):145-165.
[8] 罗晓光, 孙艳凤.创新扩散网络结构与创新扩散绩效关系研究[J].科技进步与对策, 2015,32(1):2.
Luo Xiaoguang, Sun Yanfeng. On the relationship between the structure of innovation diffusion network and the innovation diffusion performance[J].Science Technology Progress and Policy,2015,32(1):2.
[9] Hou L,Pan X, Liu J G, et al.Memory effect of the online user preference[J].Scientific Reports, 2014,4:6562.
[10] Guo Q,Shao F, Hu Z L, et al.Statistical properties of the personal social network in the Facebook[J].Europhysics Letters, 2013,104(2):28004.
[11] Wu Y, Zhou C, Xiao J, et al. Evidence for a bimodal distribution in human communication[J].Proc Natl Acad Sci, 2010,107(44):18803-18808.
[12] 刘咏梅, 彭琳, 赵振军. 基于小世界网络的微博谣言传播演进研究[J].复杂系统与复杂性科学, 2014,11(4):54-60.
LiuYongmei, Peng lin,Zhao Zhenjun. The evolution of rumor spread on microblog based on small-world network[J].Complex Systems and Complexity Science, 2014,11(4):54-60.
[13] Barthélemy M, Barrat A, Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Physical Review Letters,2004,92(17):178701.
[14] 熊熙,胡勇. 基于社交网络的观点传播动力学研究[J].物理学报, 2012,61(15):104-110.
Xiong Xi, Hu Yong.Research on the dynamics of opinion spread based on social network services[J].Acta Phys Sin,2012,61(15):104-110.
[15] Klemm K, Serrano M á, Eguíluz V M, et al. A measure of individual role in collective dynamics[J].Scientific reports, 2012,2(2):292.
[16] Lin J H, Guo Q, Liu J G, et al. Locating influential nodes via dynamics-sensitive centrality[J].Scientific Reports,2016,6(3):032812.
[17] Liu Y, Tang M, Zhou T, et al. Improving the accuracy of the k-shell method by removing redundant links-from aperspective of spreading dynamics[DB/OL].[2015-03-20].http://www.nature.com/articles/srep13172.
[18] 刘建国, 任卓明, 郭强, 等. 复杂网络中节点重要性排序的研究进展[J].物理学报, 2013,62(17):178901-178901.
Liu Jianguo, Ren Zhuoming, Guo Qiang, et al. Node importance ranking of complex networks[J].Acta Phys Sin,2013,62(17):178901-178901.
[19] Freeman L C. Centrality in social networks conceptual clarification[J].Social networks, 1979,1(3):215-239.
[20] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J].Nature Physics, 2010,6(11):888-893.
[21] 任晓龙, 吕琳媛. 网络重要节点排序方法综述[J].科学通报, 2014,59:1175-1197.
Ren XiaoLong, Lü LinYuan. Review of ranking nodes in complex networks[J].Chin Sci Bull, 2014,59:1175-1197.
[22] Gleiser P M, Danon L. Community structure in jazz[J].Advances in Complex Systems, 2003,6(4):565-573.
[23] Guimera R, Danon L, Diaz-Guilera A, et al. Self-similar community structure in a network of human interactions[J].Physical review E, 2003,68(6):065103.
[24] Kendall M G. A new measure of rank correlation[J].Biometrika, 1938:81-93.
[1] 张玉玺, 孙小淇. 概周期驱动二维正弦系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 53-57.
[2] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[3] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[4] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[5] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[6] 杨凯, 刘晓露, 林坚洪, 成曦, 郭强, 刘建国. “冰桶挑战”诱导的社交网络演化分析[J]. 复杂系统与复杂性科学, 2016, 13(2): 90-96.
[7] 曹亚娟, 刘旭升, 关剑月. 网络演化博弈中的自组织临界性[J]. 复杂系统与复杂性科学, 2017, 14(1): 15-19.
[8] 李靖, 李聪, 李翔. 人类时效交互网络的建模与传播研究综述[J]. 复杂系统与复杂性科学, 2019, 16(3): 1-21.
[9] 张奥博, 樊瑛, 狄增如. 符号网络下平衡结构对舆论形成的影响[J]. 复杂系统与复杂性科学, 2019, 16(3): 22-29.
[10] 刘天宇, 杨晓霞, 张纪会, 赵逸群, 周美琦. 基于高斯混合模型的受引导人群疏散研究[J]. 复杂系统与复杂性科学, 2020, 17(3): 62-69.
[11] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[12] 景兴利, 赵彩红, 凌翔. 加权网络上随机行走的平均首到达时间与平均吸收时间[J]. 复杂系统与复杂性科学, 2018, 15(4): 25-30.
[13] 王志平, 王佳. 基于超网络的舆论演化动态模型[J]. 复杂系统与复杂性科学, 2021, 18(2): 29-38.
[14] 孙立建, 马军海,. 考虑多种因素的一类三寡头R&D投入系统复杂性研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 80-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed