Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 7-17    DOI: 10.13306/j.1672-3813.2025.02.003
  特邀专栏 本期目录 | 过刊浏览 | 高级检索 |
矩阵半张量积与数学
程代展
中国科学院数学与系统科学研究院,北京 100190
Semi-tensor Product of Matrices and Mathematics
CHENG Daizhan
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(1460 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在简单回顾矩阵半张量积的历史后,介绍矩阵半张量积及矩阵半张量和的一般性定义及其数学本质的一些探索。包括它与数学三大分支:近世代数、微分几何以及泛函分析的关系。揭示它们作为跨越维数的算子,对经典的固定维数数学结构的拓展。作为综述文章,内容以介绍相关概念和初步结果为主,亦有少量预测性的展望。希望揭示这样一个事实:由于矩阵半张量积打破了矩阵运算中维数的蕃蓠,它必然会产生对传统的固定维数数学理论的冲击。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程代展
关键词 公理化的矩阵半张量积超群泛维流形超环超向量空间超李群与超李代数    
Abstract:After a brief review on the history of semi-tensor product (STP) of matrices, this survey paper introduces general definitions of STP and semi-tensor addition (STA), and the exploring researches on the mathematical essence of STP and STA, including three major branches: Modern Algebra, Geometry, and Analysis. The STP and STA, as cross-dimensional operators, enhance certain developments in classical mathematics, which is basically of fixed dimensions. As a survey paper, it mainly introduces fundamental concepts and basic results with few predictions. We hope to show such a fact that since the STP breaks the dimension barrier of matrix product, it will inevitably cause impact on the classical mathematics, which is of fixed dimensions.
Key wordsaxiomatic semi-tensor product of matrices    super-group    universal manifold    super-ring    super-vector space    super-Lie group    super-Lie algebra
收稿日期: 2025-04-21      出版日期: 2025-06-03
ZTFLH:  O151.21  
基金资助:国家原创探索基金(62073315)
作者简介: 程代展(1946),男,福建福州人,博士,研究员,主要研究方向为非线性控制、复杂系统理论、切换系统、多自主体系统、矩阵的半张量积及逻辑动态系统等。
引用本文:   
程代展. 矩阵半张量积与数学[J]. 复杂系统与复杂性科学, 2025, 22(2): 7-17.
CHENG Daizhan. Semi-tensor Product of Matrices and Mathematics[J]. Complex Systems and Complexity Science, 2025, 22(2): 7-17.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.003      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/7
[1] CHENG D.Semi-tensor product of matrices and its application to Morgan′s problem[J]. Science in China,Series F: Information Sciences,2001,44(3): 195212.
[2] CHENG D,QI H,Semi-tensor Product of Matrices-Theory and Application[M]. 2nd Ed,Beijing: Science Press, 2011.
[3] 梅生伟,刘峰,薛安成. 电力系统暂态分析中似的确半张量积方法[M]. 北京:清华大学出版社,2010.
[4] FORNASINI E,VALCHER M E. Recent developments in Boolean networks control[J]. J Contr Dec,2016, 13(1): 118.
[5] MUHAMMAD A,RUSHDI A,GHALEB F A M. A tutorial exposition of semi-tensor products of matrices with a stress on their representation of Boolean function[J]. JKAU Comp Sci,2016,5:330.
[6] AKUTSU T. Algorithms for Analysis,Inference,and Control of Boolean Networks[M]. New Jersey:World Scientific,2018.
[7] VLAD S E. Boolean Systems-Topics in Asynchronicity[M]. London:Elsevier,2023.
[8] CHENG D,QI H,LI Z. Analysis and Control of Boolean Networks-a Semi-tensor Product Approach[M]. London: Springer,2011.
[9] CHENG D,QI H,ZHAO Y. An Introduction to Semi-tensor Product of Matrices and Its Applications[M]. Singapore: World Scientific,2012.
[10] 程代展,齐洪胜,贺风华. 有限集上的映射与动态过程矩阵半张量积方法[M]. 北京:科学出版社,2016.
[11] CHENG D. From Dimension-Free Matrir Theory to Cross-Dimensional Dynamic Systems[M]. United Kindom:Elsevier,2019.
[12] 程代展,齐洪胜. 基本理论与多线性运算[M]. 矩阵半张量积讲义:卷1, 北京:科学出版社, 2020.
[13] 程代展,齐洪胜. 逻辑动态系统的分析与控制[M]. 矩阵半张量积讲义:卷2, 北京:科学出版社,2020.
[14] 程代展,李长喜,郝亚琦,等. 有限博弈的矩阵半张量积方法[M]. 矩阵半张量积讲义:卷3, 北京:科学出版社,2022.
[15] 程代展,纪政平. 有限与泛维动态系统[M]. 矩阵半张量积讲义:卷4, 北京:科学出版社,2023.
[16] LI H,ZHAO G,GUO P. Analysis and Control of Finite-Valued Systems[M]. Boca Raton, USA: CRC Press,2018.
[17] LIU Y,LIU J,SUN L. Sampled-date Control of Logical Networks[M]. Singapore:High Education Press,2023.
[18] ZHANG K,ZHANG L,XIE L. Discrete-Space Dynamic Systems[M]. New York:Springer,2020.
[19] 冯俊娥. 矩阵半张量积入门[M]. 济南:山东大学出版社,2024.
[20] 程代展,冯俊娥,钟江华,等. 工程及其他系统的应用[M]. 矩阵半张量积讲义:卷5, 北京:科学出版社,2024.
[21] LU J,LI H,LIU Y,et al. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems[J]. IET Contr Thmé Appl,2017, 11(13): 20402047.
[22] CHENG D,WU Y,ZHAO G,et al. A comprehensive survey on STP approach to finite games[J]. J Sys Sci Compl,2021, 34(5): 16661680.
[23] LI H,ZHAO G,MENG M,et al. A survey on applications of semi-tensor product method in engineering[J]. Science China,2018,61(1): 2844.
[24] YAN Y,CHENG D,FENG J, et al. Survey on applications of algebraic state space theory of logical systems to fnite state machines[J]. Sci China,2023, 66(1): 111201.
[25] ZHONG J,LIN D. On minimum period of nonlinear feedback shift registers in Grain-like structure[J]. IEEE Trans Inform Theory,2018,64(9): 64296442.
[26] XIE D,PENG H,LI L,et al. Semi-tensor compressed sensing[J]. Digital Signal Proc,2016,58:8592.
[27] ABRAHAM R,MARDEN J E.Foundations of Mechanics[M]. 2nd Ed. London: Benjamin/Cummings Pub,1978.
[28] KELLEY J L.General Topology[M]. New York:Springer-verlag,1955.
[29] SCHAEFER H H. Topological Vector Spaces[M]. New York:Springer-verlag,1970.
[30] TAYLOR A E,LAY D C. Introduction to Functional Analysis[M]. 2nd Ed. New York:John Wiley & Sons,1980.
[31] ZHANG K,JOHANSSON K. Long-term behavior of cross-dimensional linear dynamic systems[C]//The 37th Chinese Control Conference, Wuhan, China: IEEE, 2018.
[32] CHEN X,CHENG D,FENG J. Matrix projection and its application in image processing[J]. Digital Signal Proc, 2025, 163:105231.
[33] CHEN X,LI Y,ZHANG L,et al. Support vector machinei1handling missing data: a Cheng projection method[DB/OL].[20250401]. https://sysmath.cjoe.ac.cn/issc/EN/abstract/abstract54767.
[34] CHENG D. Cross-dimensional mathematics-a mathematical foundation for STP/STA[DB/OL].[20250401]. http://arxiv.org/abs/2406.12920.
[35] HUNGERFORD T W. Algebra[M]. New York:Springer-Verlag,1974.
[36] HAL B C. Lie Groups, Lie Algebras,and Representations-an Elementary Introduction[M]. New York: Springer-Verlag,2003.
[37] CHEN C. Thenor-Based Dynamical Systems-Theory and Applications[M]. Switzerland:Springer,2024.
[38] LIM L.Tensors and Hypermatrices[EB/OL].[20250401]. http://www.stat.uchicago.edu/~lekheng/work/hla.pdf.
[39] VASWANI A,SHAZEER M,PARMAR N,et al. Attention is all you need[DB/OL].[20250401]. http://arxiv.org/abs/1706.03762.
[1] 苏雪, 徐勇, 樊旭娇. 切换拓扑企业创新时滞演化博弈[J]. 复杂系统与复杂性科学, 2019, 16(1): 54-62.
[2] 武利琴, 王金环, 徐勇. 一种基于半张量积的多层网络演化博弈方法[J]. 复杂系统与复杂性科学, 2017, 14(3): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed