Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 130-137    DOI: 10.13306/j.1672-3813.2026.01.016
  研究前沿 本期目录 | 过刊浏览 | 高级检索 |
自动驾驶场景下的高效多任务视觉感知模型
刘博航, 赵强, 唐政林, 唐英龙, 李业琪
东北林业大学机电工程学院, 哈尔滨 150040
Efficient Multi-task Visual Perception Model in Autonomous Driving Scenarios
LIU Bohang, ZHAO Qiang, TANG Zhenglin, TANG Yinglong, LI Yeqi
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
全文: PDF(6485 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为高效利用自动驾驶车辆硬件算力,在YOLOv5的基础上构建了多任务感知模型OLAD,能够同时实现交通目标检测、车道线识别和可行驶区域分割。通过引入改进的SPPFCSPC模块、参考Slim-Neck重新设计特征融合网络,提高了模型特征提取能力、推理速度和检测精度,并在损失函数中引入MPDIoU以提升交通目标检测精度。模型性能验证方面,在BDD100K验证集中补充自制国内道路数据集进行综合性能评测,结果表明OLAD的检测精度和速度都优于目前SOTA的YOLOP;另外随机选取苏州市不同时段的公开道路图片以测试模型在国内道路的表现,结果显示本文的OLAD模型感知结果更准确、更适用于国内道路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘博航
赵强
唐政林
唐英龙
李业琪
关键词 自动驾驶多任务感知模型目标检测车道线识别可行驶区域分割    
Abstract:To efficiently utilize the hardware computing power of autonomous vehicles, a multi-task perception model OLAD is constructed based on YOLOv5,which can simultaneously achieve traffic object detection, lane lines recognition, and drivable area segmentation. By introducing an improved SPPFCSPC module and redesigning the feature fusion network based on Slim Neck, OLAD enhances feature extraction capabilities, inference speed, and detection accuracy, the loss function is improved by incorporating MPDIoU to boost the accuracy of traffic objects detection. In terms of model performance validation, a comprehensive performance evaluation is conducted by supplementing the self-made domestic road dataset in the BDD100K validation set. The results show that the detection accuracy and speed of OLAD are better than the YOLOP of SOTA; In addition, public road images from different time periods in Suzhou are randomly selected to test the performance of the model on domestic roads. The results show that the perception results of the OLAD model in this paper are more accurate and suitable for domestic roads.
Key wordsautonomous driving    multi-task perception model    object detection    lane line recognition    drivable area segmentation
收稿日期: 2024-02-01      出版日期: 2026-02-13
ZTFLH:  TP391  
  TP14  
基金资助:黑龙江省重点研发计划项目(JD22A014)
通讯作者: 赵 强(1971-),男,黑龙江富锦人,博士,教授,主要研究方向为无人驾驶车辆跟踪与控制。   
作者简介: 刘博航(2000-),男,内蒙古赤峰人,硕士研究生,主要研究方向为无人驾驶车辆环境感知
引用本文:   
刘博航, 赵强, 唐政林, 唐英龙, 李业琪. 自动驾驶场景下的高效多任务视觉感知模型[J]. 复杂系统与复杂性科学, 2026, 23(1): 130-137.
LIU Bohang, ZHAO Qiang, TANG Zhenglin, TANG Yinglong, LI Yeqi. Efficient Multi-task Visual Perception Model in Autonomous Driving Scenarios[J]. Complex Systems and Complexity Science, 2026, 23(1): 130-137.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.016      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/130
[1] ALAM M K, AHMED A, SALIH R, et al. Faster RCNN based robust vehicle detection algorithm for identifying and classifying vehicles[J]. Journal of Real-Time Image Processing, 2023, 20(5): 93-103.
[2] 宋华杰,周磊.基于函数改进的YOLOv3车辆检测与识别算法研究[J].智能科学与技术学报, 2023, 5(4): 535-542.
SONG H, ZHOU L.Research on vehicle detection and recognition algorithm based on function improvement of YOLOv3 [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4): 535-542.
[3] LIU Z, HAN W, XU H, et al. Research on vehicle detection based on improved YOLOX_S[J]. Scientific Reports, 2023, 13(1): 23081.
[4] WEMG W, ZHU X. INet: Convolutional networks for biomedical image segmentation[J]. IEEE Access, 2021, 9: 16591-16603.
[5] ZHAO H, SHI J,QI X, et al. Pyramid scene parsing network[C].2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 2881-2890.
[6] DU J, SONG J, CHENG K, et al. Efficient spatial pyramid of dilated convolution and bottleneck network for Zero-Shot super resolution[J]. IEEE Access, 2020, 8: 117961-117971.
[7] ZHANG Y, LU Z, MA D, et al. Ripple-GAN: lane line detection with ripple lane line detection network and wasserstein GAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22: 1532-1542.
[8] HARIS M, HOU J,WANG X. Lane lines detection under complex environment by fusion of detection and prediction models[J]. Transportation Research Record, 2022, 2676(3): 342-359.
[9] YANG Q, MA Y,LI L, et al. Lightweight lane line detection based on learnable cluster segmentation with self-attention mechanism[J]. IET Intelligent Transport Systems, 2023, 17(3): 522-533.
[10] QIAN Y, DOLAN J M,YANG M, DLT-Net: joint detection of drivable areas, lane lines, and traffic objects[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4670-4679.
[11] CHEN G, WU T,DUAN J, et al. CenterPNets: a multi-task shared network for traffic perception[J]. Sensors, 2023, 23(5): 2467.
[12] 孙传龙,赵红,崔翔宇,等.基于特征融合的无人驾驶多任务感知算法[J].复杂系统与复杂性科学, 2023, 20(3): 103-110.
SUN C, ZHAO H, CUI X, et al. Multi-task sensing algorithm for driverless vehicle based on feature fusion[J]. Complex Systems and Complexity Science, 2023, 20(3): 103-110.
[13] WU D, LIAO M,ZHANG W, et al. YOLOP: you only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19(6): 550-562.
[14] LI H. Slim-neck byGSConv: a better design paradigm of detector architectures for autonomous vehicles[DB/OL]. (2022-08-17)[2024-01-01]. https://doi.org/10.48550/arXiv.2206.02424.
[15] WANG C Y,BOCHKOVSKIY A, LIAO H, et al. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C].2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2023: 7464-7475.
[16] MA S, XU Y.MPDIoU: a loss for efficient and accurate bounding box regression[DB/OL]. (2022-07-14)[2024-01-01]. https://doi.org/10.48550/arXiv.2307.07662.
[17] YU F, CHEN H,WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 2636-2645.
[1] 吴易, 王庆芝. 基于编队和动态优先级的混合路口通行策略[J]. 复杂系统与复杂性科学, 2024, 21(1): 126-131.
[2] 孙传龙, 赵红, 崔翔宇, 牟亮, 徐福良, 路来伟. 基于特征融合的无人驾驶多任务感知算法[J]. 复杂系统与复杂性科学, 2023, 20(3): 103-110.
[3] 张可琨, 曲大义, 宋慧, 戴守晨. 自动驾驶车辆换道博弈策略分析及建模[J]. 复杂系统与复杂性科学, 2023, 20(2): 60-67.
[4] 徐泽洲, 曲大义, 洪家乐, 宋晓晨. 智能网联汽车自动驾驶行为决策方法研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 88-94.
[5] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020, 17(4): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed