Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 146-152    DOI: 10.13306/j.1672-3813.2026.01.018
  研究前沿 本期目录 | 过刊浏览 | 高级检索 |
基于控制输入和状态翻转的布尔控制网络状态估计
邢谦, 杨俊起, 王尚坤
河南理工大学 a.电气与自动化工程学院;b.河南省煤矿装备智能检测与控制重点实验室, 河南 焦作 454003
State Estimation of Boolean Control Networks Based on Control Inputs and State-flipped
XING Qian, YANG Junqi, WANG Shangkun
a. School of Electrical Engineering and Automation; b. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University, Jiaozuo 454003, China
全文: PDF(1434 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了解决布尔控制网络的状态估计问题,运用控制输入,将布尔控制网络转化为布尔网络。进而基于控制输入和输出研究布尔控制网络状态估计问题,输出依赖状态估计集元素不唯一时,引入状态翻转控制,并提出实现到达目标状态的充分条件。设计联合控制对序列求解算法,将输出依赖状态估计状态集中的所有状态同时翻转到目标状态,实现对布尔控制网络的状态估计。实例证明:该研究方法能够实现布尔控制网络的状态估计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢谦
杨俊起
王尚坤
关键词 布尔网络半张量积状态翻转控制状态估计    
Abstract:In order to solve the state estimation problem of Boolean control networks, control inputs and state-flipped control are used in this paper. First, relying on the control inputs, the Boolean control network is transformed into a Boolean network, and then the state estimation problem of Boolean control network is studied based on the control inputs and outputs. Second, the state-flipped control is introduced to the system when the elements of the set of output-dependent state estimation are not unique, and a sufficient condition is proposed to realize the reachability of the target state. Third, all states in the output-dependent state estimation set are simultaneously flipped to the target state by designing an algorithm to calculate the joint control pair sequences, and further the state estimation of the Boolean control network is realized. Finally, it is shown through examples that the research method enables state estimation of Boolean control networks.
Key wordsBoolean networks    semi-tensor product    state-flipped control    state estimation
收稿日期: 2024-01-09      出版日期: 2026-02-13
ZTFLH:  TP273  
  TP31  
基金资助:河南省自然科学基金(232300420147)
通讯作者: 杨俊起(1979-),男,河南濮阳人,博士,教授,主要研究方向为逻辑动态系统,观测器设计。   
作者简介: 邢 谦(1994-),男,河南南阳人,硕士研究生,主要研究方向为布尔控制网络的状态估计。
引用本文:   
邢谦, 杨俊起, 王尚坤. 基于控制输入和状态翻转的布尔控制网络状态估计[J]. 复杂系统与复杂性科学, 2026, 23(1): 146-152.
XING Qian, YANG Junqi, WANG Shangkun. State Estimation of Boolean Control Networks Based on Control Inputs and State-flipped[J]. Complex Systems and Complexity Science, 2026, 23(1): 146-152.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.018      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/146
[1] KAUFFMAN S A. Metabolic stability and epigenesist in randomly constructed genetic nets[J]. Journal of Theoretical Biology, 1969, 22(3): 437-467.
[2] CHENG D Z, QI H S, LI Z Q. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach[M]. London:Springer, 2011, 37(5): 529-539.
[3] CHENG D Z. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10): 2251-2258.
[4] YANG J Q, LONG H, CHEN Y T, et.al. Reconstructibility analysis and set-observer design for Boolean control networks[J]. Asian Journal of Control, 2022,25(4): 2881-2892.
[5] FORNASINI E, VALCHER M E. Observability, reconstructibility and state observers of Boolean control networks[J]. IEEE Transactions on Automatic Control, 2013, 58(6): 1390-1401.
[6] ZHANG Z H, LEIFELD T, ZHANG P. Observer design for Boolean control networks[J]. IEEE 55th Conference on Decision and Control. Las Vegas, USA, 2016: 6272-6277.
[7] ZHANG Z H, LEIFELD T, ZHANG P. Reconstructibility analysis and observer design for Boolean control networks[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1) :516-528.
[8] ZHANG X, MENG M, WANG Y H. Criteria for observability and reconstructibility of Boolean control networks via set controllability[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(4): 1263-1267.
[9] YANG J Q, GAO Z H, LI Z Q, et.al. An improved multiple-state observer of Boolean control networks[J]. Asian Journal of Control, 2019, 21(6): 1-11.
[10] CHENG D Z, Qi H S. Controllability and observability of Boolean control networks[J]. Automatica, 2009, 10(7): 1659-1667.
[11] 沈宇桐, 徐勇. 带多个信道的布尔控制网络可观测性[J]. 复杂系统与复杂性科学, 2022, 19(2): 45-52.
SHEN Y T, XU Y. Observability of Boolean control networks with multiple channels[J]. Complex Systems and Complexity Science, 2022, 19(2): 45-52.
[12] LI T Y, FENG J E, WANG B. Reconstructibility of singular Boolean control networks via automata approach[J]. Neurocomputing, 2020, 416(6): 19-27.
[13] FOMASINI E, VALCHER M E. Optimal control of Boolean control networks[J]. IEEE Transactions on Automatic Control, 2014, 59(5): 1258-1270.
[14] FANG M, WANG L Q, WU Z G. Asynchronous stabilization of Boolean control networks with stochastic switched signals[J]. IEEE Transaction on System, Man, and Cybernetics: System, 2021, 51(4): 2425-2432.
[15] 刘洋, 刘泽娇, 卢剑权. 状态翻转控制下布尔控制网络的可镇定性和Q学习算法[J]. 控制理论与应用, 2021, 38(11):1743-1753.
LIU Y, LIU Z J, LU J Q. State-flipped control and Q-learning algorithm for the stabilization of Boolean control networks[J]. Control Theory & Applications, 2021, 38(11):1743-1753.
[16] MAHAMMAD R R, FARIBA B. Attractor controllability of Boolean networks by flipping a subset of their nodes[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 043120.
[17] MOHAMMAD R R, FARIBA B. Attractor stabilizability of Boolean networks with application to biomolecular regulatory networks[J]. IEEE Transactions on Control of Network Systems, 2019, 6(1): 72-81.
[18] CHEN H, WANG Z, LIANG J, et.al. State estimation for stochastic time-varying Boolean networks[J]. IEEE Transactions on Automatic Control, 2020, 65(12): 5480-5487.
[19] ZHONG J, YU Z, LI Y, et.al. State estimation for probabilistic Boolean networks via outputs observation[J]. IEEE Transaction on Neural Network and Learning System, 2022, 33(9): 4699-4711.
[1] 周宣欣, 吴亚勇, 蒋国平. 两类耦合超图网络状态估计研究[J]. 复杂系统与复杂性科学, 2025, 22(2): 90-96.
[2] 程代展. 矩阵半张量积与数学[J]. 复杂系统与复杂性科学, 2025, 22(2): 7-17.
[3] 沈宇桐, 徐勇. 带多个信道的布尔控制网络可观测性[J]. 复杂系统与复杂性科学, 2022, 19(2): 45-52.
[4] 范建明, 薛斌强. 带有丢包的分布式网络系统的滚动时域融合估计策略[J]. 复杂系统与复杂性科学, 2021, 18(3): 75-79.
[5] 王桂林, 徐勇. 带攻击玩家的演化拥塞博弈的鲁棒性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 47-53.
[6] 苏雪, 徐勇, 樊旭娇. 切换拓扑企业创新时滞演化博弈[J]. 复杂系统与复杂性科学, 2019, 16(1): 54-62.
[7] 武利琴, 王金环, 徐勇. 一种基于半张量积的多层网络演化博弈方法[J]. 复杂系统与复杂性科学, 2017, 14(3): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed