Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 17-24    DOI: 10.13306/j.1672-3813.2018.04.003
  本期目录 | 过刊浏览 | 高级检索 |
基于有偏向的重启随机游走链路预测算法
吕亚楠, 韩华, 贾承丰, 瞿倩倩
武汉理工大学理学院,武汉 430070
Link Prediction Algorithm Based on Biased Random Walk with Restart
Ly Ya′nan, HAN Hua, JIA Chengfeng, QU Qianqian
School of Science,Wuhan University of Technology, Wuhan 430070, China
全文: PDF(1364 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 链路预测中,基于随机游走过程的相似性指标往往设定游走粒子转移到相邻节点的概率是相等的,忽略了节点度值对粒子转移概率的影响。针对此问题,提出一种有偏向的重启随机游走链路预测算法。首先借鉴有偏向随机游走过程,重新定义游走粒子的转移概率,然后将其运用到有重启的随机游走中,探究粒子在游走过程中节点度值对其转移的作用,最后在粒子有偏向转移的基础上,将提出的指标同6个经典的相似性指标进行对比。通过对6个真实数据集进行链路预测,结果表明:与无偏向性转移相比,有偏向性转移的预测算法具有更高的预测精度,且高于其他相似性指标的预测值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕亚楠
韩华
贾承丰
瞿倩倩
关键词 链路预测相似性有偏向重启随机游走    
Abstract:In link prediction, the similarity indices based on random walk process often set the probability of particles transferring to adjacent nodes to be equal, but neglecting the influence of node degree on the transition probability. To save this problem, a link prediction algorithm of biased random walk with restart is proposed. Firstly, we redefine the transfer probability of particles by referring to biased random walk. Then we apply it to the random walk with restart to explore the effect of node degree on the transfer of particles. Finally, on the basis of biased random walk,the proposed index is compared with six classical similarity indices.The experimental results of six real data sets show that the prediction algorithm of biased random walk with restart has higher prediction accuracy than that the unbiased one, and is better than other similarity indices.
Key wordslink prediction    similarity    biased    random walk with restart
     出版日期: 2019-05-16
ZTFLH:  TP393  
基金资助:中央高校基本科研业务费(2018IB016);国家自然科学基金青年科学基金(111701435);国家自然科学基金(11601402)
通讯作者: 韩华(1975),女,山东烟台人,博士,教授,主要研究方向为复杂性分析与评价、经济控制与决策。   
作者简介: 吕亚楠(1992),女,河南南阳人,硕士研究生,主要研究方向为链路预测、复杂网络分析。
引用本文:   
吕亚楠, 韩华, 贾承丰, 瞿倩倩. 基于有偏向的重启随机游走链路预测算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 17-24.
Ly Ya′nan, HAN Hua, JIA Chengfeng, QU Qianqian. Link Prediction Algorithm Based on Biased Random Walk with Restart. Complex Systems and Complexity Science, 2018, 15(4): 17-24.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.003      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/17
[1]Costa L F, Rodrigues F A, Travieso G, et al. Characterization of complex networks: a survey of measurements[J]. Advnces in Physics. 2007,56(1):167242.
[2]Cannistraci C V, Alanis-Lobato G, Ravasi T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Sci Rep, 2013, 3(4):1613.
[3]Ma C, Zhou T, Zhang H F. Playing the role of weak clique property in link prediction:a friend recommendation model[J]. Sci Rep, 2016, 6:30098.
[4]刘宏鲲, 吕琳媛, 周涛. 利用链路预测推断网络演化机制[J]. 中国科学:物理学, 力学, 天文学, 2011, 41(7):816823.
Liu Hongkun, Lü Linyuan, Zhou Tao. Uncovering the network evolution mechanism by link prediction [J]. Sci Sin Phys Mech Astron, 2011, 41: 816823.
[5]Lü L Y, Zhou T. Link Prediction in complex networks:a survey[J]. Physica A:Statistical Mechanics and Its Applications, 2011, 390(6):11501170.
[6]Wu Z, Lin Y, Wang J, et al. Link prediction with node clustering coefficient[J]. Physica A Statistical Mechanics & Its Applications, 2016, 452:18.
[7]Yang Y, Zhang J, Zhu X, et al. Link prediction via significant influence[J]. Physica A Statistical Mechanics & Its Applications, 2018, 492:15231530.
[8]Peng Z, Wang F, Xiang W, et al. The reconstruction of complex networks with community structure[J]. Sci Rep, 2015, 5:17287.
[9]Klein D J,Randic M.Resistance distance[J].Journal of Mathematical Chemistry,1993,12(1):8195.
[10]Brin S,Page L.The anatomy of a large-scale hypertextual web search engine[J].Computer network and ISDN Systems,1998,30(1):107117.
[11]Jeh G, Widom J. SimRank: a measure of structural-context similarity[C]∥Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM, 2002:538543.
[12]Park H, Jung J, Kang U. A comparative study of matrix factorization and random walk with restart in recommender systems [C]∥IEEE, International Conference on Big Data. Boston, USA: IEEE, 2017:756765.
[13]Jung J, Jin W, Sael L, et al. Personalized ranking in signed networks using signed random walk with restart[C]∥IEEE, International Conference on Data Mining. Barcelona, Spain: IEEE, 2017:973978.
[14]Zhu Z A, Lattanzi S, Mirrokni V. A local algorithm for finding well-connected clusters[J].ICML, 2013:396404.
[15]Li R H, Yu J X, Liu J. Link prediction: the power of maximal entropy random walk[C]∥ACM International Conference on Information and Knowledge Management. Glasgow, United Kingdom: ACM, 2011:11471156.
[16]刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8):22342239.
Liu Si, Liu Hai, Chen Qimai, et al. Link prediction algorithm based on network representation learning and random walk[J]. Journal of Computer Applications, 2017, 37(8):22342239.
[17]Jin W, Jung J, Kang U. Supervised and extended restart in random walks for ranking and link prediction in networks[DB/OL]. [20180803]. https://arxiv.org/pdf/1710.06609v1.pdf.
[18]Vázquez A, Moreno Y. Resilience to damage of graphs with degree correlations[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 67(1):015101.
[19]Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861874.
[20]Fronczak A, Fronczak P. Biased random walks in complex networks: the role of local navigation rules[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(1):016107.
[21]徐全智. 随机过程及应用[M]. 北京:高等教育出版社, 2013.
[22]郑伟, 王朝坤, 刘璋, 等. 一种基于随机游走模型的多标签分类算法[J]. 计算机学报, 2010, 33(8):14181426.
Zheng Wei, Wang Chaokun, Liu Zhang, et al. A multi-label classification algorithm based on random walk model[J]. Chinese Journal of Computers, 2010, 33(8):14181426.
[23]Liu W, Lu L. Link prediction based on local random walk[J]. Physics, 2010, 89(5):5800758012.
[24]Network data[EB/OL]. [20180803].http://www-personal.umich.edu/~mejn/netdata.
[25]Barabási A L, Alber R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509512.
[26]Adamic L A, Adar E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3):211230.
[1] 李守伟, 文世航, 王磊. 基于多层网络视角的企业担保结构研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 10-16.
[2] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed