Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 22-29    DOI: 10.13306/j.1672-3813.2019.03.002
  本期目录 | 过刊浏览 | 高级检索 |
符号网络下平衡结构对舆论形成的影响
张奥博, 樊瑛, 狄增如
北京师范大学系统科学学院,北京 100875
Influence of Balanced Structure on the Spread of Public Opinion in Signed Networks
ZHANG Aobo, FAN Ying, DI Zengru
School of Systems Science, Beijing Normal University, Beijing 100875,China
全文: PDF(4965 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 符号网络是连边具有正负关系的网络,对系统功能产生重要影响。模拟得出负边比例与平衡结构比例之间的关系,基于点和边建立舆论动力学演化模型,利用计算机数值模拟研究演化和极限行为,发现负边比例的增加能够扩大网络周期变化的范围,最终会影响系统的趋同性;在耦合演化过程中,引入概率及时间尺度后会产生更加丰富的变化模式,并且完全平衡网络能加速系统在演化中达到稳态的弛豫过程,并能最终根据节点状态划分为两个社团。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张奥博
樊瑛
狄增如
关键词 舆论动力学模型符号网络平衡结构    
Abstract:The signed network is a network with both of positive and negative attributes on the edges, and has important effects on the function of the system. By changing the proportion of negative edges in the network, the relationship between the ratio of negative edges and the proportion of balanced structures is obtained. Subsequently, a dynamic evolution model based on nodes and edges was established in the signed network. Then its dynamics and final steady states are investigated by computer simulation. It is found that the increase in the proportion of negative edges can expand the scope of changing nodes, and at the same time it will affect the evolution behaviour. In the coupling evolution of edges and states, adding the adjustment probability of the interaction and the influence of the time scale, it will produce a richer cycle change pattern. During the research process, we found a method to construct a fully-balanced network, and found that it can accelerate the system to reach a steady state during the evolution, and can finally divide the network into two communities.
Key wordsopinion formation dynamic model    signed network    balanced structure
收稿日期: 2019-05-16      出版日期: 2019-10-24
ZTFLH:  N941.3  
  C912  
基金资助:国家自然科学基金(71731002,61573065);国家重点研发计划(2017YFC0804000)
通讯作者: 狄增如(1962-),男,河北廊坊人,博士,教授,主要研究方向为系统理论、复杂网络。   
作者简介: 张奥博(1996-),女,黑龙江双鸭山,硕士研究生,主要研究方向为符号网络、网络传播。
引用本文:   
张奥博, 樊瑛, 狄增如. 符号网络下平衡结构对舆论形成的影响[J]. 复杂系统与复杂性科学, 2019, 16(3): 22-29.
ZHANG Aobo, FAN Ying, DI Zengru. Influence of Balanced Structure on the Spread of Public Opinion in Signed Networks. Complex Systems and Complexity Science, 2019, 16(3): 22-29.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.002      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/22
[1]Heider F. Attitudes and cognitive organization[J]. Journal of Psychology, 1946,21(1):107-112.
[2]Guha R, Kumar R, Raghavan P, Tomkins A. Propagation of trust and distrust[C]. Proc of the 13th Int’l Conf on World Wide Web. New York: ACM Press, 2004. 403-412.
[3]Kunegis J, Lommatzsch A, Bauckhage C. The slashdot zoo: mining a social network with negative edges[C]. Proc of the 18th Int’l Conf on World Wide Web. New York: ACM Press, 2009: 741-750.
[4]Ghosn F, Palmer G. The MID3 data set, 1993-2001: procedures, coding rules, and description[J]. Conflict Management and Peace Science, 2004,21(2):133-154.
[5]Parisien C, Anderson C H, Eliasmith C. Solving the problem of negative synaptic weights in cortical models[J]. Neural Computation, 2008,20(6):1473-1494.
[6]程苏琦,沈华伟,张国清,等. 符号网络研究综述[J]. 软件学报,2014,01:1-15.
Cheng Suqi, Shen Huawei, Zhang Guoqing, et al. Survey of signed network research[J]. Journal of Software, 2014,25(1):1-15.
[7]Cartwright D, Harary F. Structural balance: a generalization of Heider’s theory[J]. Psychological Review, 1956,63(5):277-293.
[8]Davis J A. Clustering and structural balance in graphs[J]. Human Relations, 1967, 20(2):181-187.
[9]Cartwright D, Harary F. Structural balance: a generalization of Heider′s theory[J]. Psychological Review, 1977, 63(5):9-25.
[10] Estrada E, Benzi M. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks[J]. Physical Review E, 2014, 90: 042802.
[11] Kirkley A, Cantwell G T, Newman M E J. Balance in signed networks.[J]. Physical Review E,2019,99: 012320.
[12] Traag V A, Bruggeman J. Community detection in networks with positive and negative links[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 80:036115.
[13] Larusso N, Bogdanov P, Singh A. Identifying communities with coherent and opposing views[C]. Proc of the 15th Annual Graduate Student Workshop in Computing. Santa Barbara: UCSB, 2010: 31-32.
[14] Agrawal P, Garg V K, Narayanam R. Link label prediction in signed social networks[C].International Joint Conference on Artificial Intelligence, 2013: 2591-2597.
[15] Liu M M, Guo J F, Chen J. Link prediction in signed networks based on the similarity and structural balance theory[J]. Journal of Information Hiding & Multimedia Signal Processing, 2017, 8(4):831-846.
[16] Chiang K Y, Natarajan N, Tewari A, et al. Exploiting longer cycles for link prediction in signed networks[C]. ACM International Conference on Information and Knowledge Management. Glasgow, Scotland, UK: ACM, 2011:1157-1162.
[17] Szell M, Lambiotte R, Thurner S. Multirelational organization of large-scale social networks in an online world[J]. Proc of the National Academy of Sciences, 2010,107(3):13636-13641.
[18] Wu Y,Gao L L,Zhang Y,et al. Structural balance and dynamics over signed BA scale-free network[J]. Physica A: Statistical Mechanics and Its Applications,2019,525.
[19] Pan L L, Shao H B, Mesbahi M, et al. Structural balance of multiplex signed networks: a distributed data-driven approach[J]. Physica A: Statistical Mechanics and Its Applications,2018, 508(15): 748-756.
[20] 刘雅楚.符号网络平衡结构算法设计[D].济南:山东师范大学,2016.
Liu Yachu. Algorithms design on balance structure in signed networks[D]. Jinan: Shandong Normal University, 2016.
[21] 刘怡君,牛文元. 舆论形成及其演化的机理建模分析[J]. 科学对社会的影响,2009,(03):10-14.
Liu Yijun, Niu Wenyuan. Modeling and analysis on the mechanism of the formation and evolution of public opinion[J]. Impact of Science on Society, 2009(3):10-14.
[22] Zhang Z D. Conjectures on exact solution of three dimensional (3D) simple orthorhombic ising lattices[J]. Philosophical Magazine, 2007, 87(24): 5309-5419.
[23] Sznajd Weron K, Sznajd J. Opinion evolution in closed community[J]. International Journal of Modern Physics C, 2000, 11(6): 1157-1165.
[24] Deffuant G, Neau D, Amblard F, et al. Mixing beliefs among interacting agents[J]. Advances in Complex Systems, 2000, 3(1): 87-98.
[25] Hegselmann R, Krause U. Opinion dynamics and bounded confidence: models, analysis and simulation[J]. Journal of Artificial Societies and Social and Social Simulation, 2002,5(3): 96-104.
[26] 何敏华,张端明,王海艳,等. 基于无标度网络拓扑结构变化的舆论演化模型[J]. 物理学报,2010,59(8):5175-5181.
He Minhua, Zhang Duanming, Wang Haiyan, et al. Public opinion evolution model with the variable topology structure based on scale free network[J]. Acta Physica Sinica, 2010,59(8):5175-5181.
[27] 罗植,杨冠琼,狄增如.具有空间因素的社会网络上的舆论形成[J]. 物理学报,2012,61(19):87-94.
Luo Zhi, Yang Guanqiong, Di Zengru. Opinion formation on the social networks with geographic structure[J]. Acta Physica Sinica, 2012,61(19):87-94.
[28] Zhao C, Bin A, Ye W M, et al. Motif for controllable toggle switch in gene regulatory networks[J]. Physica A, 2015,419:498-505.
[29] Nowak M A,May R M. Evolutionary games and spatial chaos[J]. Nature. 1992,415:424-426.
[30] Lim M, Metzler R, Bar-Yam Y. Global pattern formation and ethnic/cultural violence[J]. Science,2007,317(5844): 1540-1544.
[31] 刘怡君,李倩倩,牛文元.舆论动力学模型综述[J].管理评论,2013,25(1):167-176.
Liu Yijun, Li Qianqian, Niu Wenyuan. Review on the models of opinion dynamics[J]. Management Review, 2013,25(1):167-176.
[32] Oliveira M. J. Isotropic majority-vote model on a square lattice [J]. Journal of Statistical Physics, 1992, 66(1/2): 273-281.
[33] Pereira L F C,Moreira F G B. Majority-vote model on random graphs[J]. Physics Reviews, 2005,71(1): 016123.
[34] Lima F W S. Majority-vote model on opinion-dependent networks[J]. International Journal of Modern Physics C,2013,24(9):1350066.
[35] Lima F W S. Three-state majority-vote model on square lattice[J]. Physica A: Statistical Mechanics and Its Applications,2012,391(4):1753-1758.
[36] Balankin A S, Martinez-Cruz M A, Matinez F G, et al. Ising percolation in a three-state majority vote model[J]. Physics Letters A,2017,381(5):440-445.
[1] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed