Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 45-54    DOI: 10.13306/j.1672-3813.2020.01.006
  本期目录 | 过刊浏览 | 高级检索 |
基于混沌映射的自适应退火型粒子群算法
田兴华, 张纪会, 李阳
青岛大学复杂性科学研究所,山东 青岛 266071
An Adaptive Annealing Particle Swarm Optimization Based on Chaotic Mapping
TIAN Xinghua, ZHANG Jihui, LI Yang
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1979 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 粒子群优化算法是一种新型的群体智能算法,具有参数少、使用方便、效果好等优点,因而得到了广泛应用。为了改进粒子群算法的性能,在自适应粒子群算法和模拟退火粒子群算法的基础上提出基于混沌映射的自适应退火型粒子群算法,在局部最优解附近添加混沌扰动算子,使其具有突跳能力,进而提高全局搜索能力;将传统的惯性因子改为双重选择策略,不仅使惯性因子随着目标函数的变化而变化而且随着粒子当前位置与上一时刻位置的距离的变化而变化;采用线性递减加速因子来动态调整自身经验和群体经验在迭代中的作用。通过数值实验验证了改进算法的性能,结果表明改进的算法对于不同类型的函数的寻优能力要优于自适应粒子群算法和模拟退火粒子群算法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田兴华
张纪会
李阳
关键词 混沌扰动算子群体智能粒子群算法双重选择策略线性递减方程    
Abstract:Particle swarm optimization (PSO) is a new swarm intelligence algorithm.It has some advantages such as fewer parameters, easy implementation and good efficiency etc. such that obtains many applications. In order to improve the performance of PSO, based on adaptive particle swarm optimization and simulated annealing particle swarm optimization, a chaotic adaptive annealing particle swarm optimization based on chaotic mapping is proposed.A chaotic perturbation operator is added to near-optimal solutions to enhance the global search capability. A double selection strategy is adopted instead of the traditional inertia factor, which not only makes the inertia factor change with the change of objective function, but also with the change of distance between the current position and the previous one of the particle.The effect of self and group experience in iteration is dynamically adjusted by a linear decreasing accelerating factor.The performance of the improved algorithm is verified by numerical experiments. The results show that the improved algorithm is superior to adaptive PSO and simulated annealing PSO for different types of functions.
Key wordschaotic perturbation operator    swarm intelligence    particle swarm optimization    dual choice strategy    linear decreasing equation
收稿日期: 2019-10-31      出版日期: 2020-04-29
ZTFLH:  N945.15  
  TP273.1  
基金资助:国家自然科学基金(61673228)
通讯作者: 张纪会(1969-),男,山东青岛人,博士,教授,主要研究方向为现代启发式算法、物流系统工程、复杂系统建模、分析与优化。   
作者简介: 田兴华(1995-),女,山东临沂人,硕士研究生,主要研究方向为现代启发式算法。
引用本文:   
田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
TIAN Xinghua, ZHANG Jihui, LI Yang. An Adaptive Annealing Particle Swarm Optimization Based on Chaotic Mapping. Complex Systems and Complexity Science, 2020, 17(1): 45-54.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.006      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/45
[1]Reynolds C W. Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21(4): 25-34.
[2]Heppner F,Grenander U. A stochastic nonlinear model for coordinated bird flocks[C]// Krasner S. The Ubiquity of Chaos. American Association for the Advancement of Science. Washington D C: AAAS Publications, 1990: 233-238.
[3]Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway N J: IEEE, 1995: 1942-1948.
[4]Kennedy J, Russell C E, Shi Y H. Swarm Intelligence[M]. San Francisco: Morgan Kaufmann Publishers, 2001.
[5]Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[C]// Proceedings of the World Multi-conference on Systems, Cybernetics and Informatics. Piscataway, N J: IEEE, 1997: 4104-4109.
[6]Banks A, Vincent J, Anyakoha C. A review of particle swarm optimization. Part I: background and development[J]. Natural Computing. 2007, 6(4): 467-484.
[7]Banks A, Vincent J, Anyakoha C. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[J]. Natural Computing, 2008, 7(1): 109-124.
[8]Jain N K, Nangia U, Jain J. A review of particle swarm optimization[J]. Journal of the Institution of Engineers (India): Series B, 2018, 99(4): 407-411.
[9]Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications[J]. Mathematical Problems in Engineering, 2015,2015: 1-38.
[10] Bonyadi M R, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review[J]. Evolutionary Computation, 2017, 25(1): 1-54.
[11] Fang W, Sun J, Ding Y, et al. A review of quantum-behaved particle swarm optimization [J]. IETE Technical Review, 2010, 27(4): 336-348.
[12] 郑庆新,顾晓辉,张洪铭. 基于SQP和自适应搜索的混沌粒子群算法[J].计算机工程与应用,2018, 54(13): 131-136.
Zheng Qingxin, Gu Xiaohui, Zhang Hongming. Chaos particle swarm optimization algorithm based on SQP and adaptive search[J]. Computer Engineering and Applications, 2018, 54(13):131-136.
[13] Zhou Y H, Su K, Shao L M. A new chaotic hybrid cognitive optimization algorithm[J]. Cognitive Systems Research, 2018, 52: 537-542.
[14] Yu Y, Gao S, Shi C, et al. CBSO: a memetic brain storm optimization with chaotic local search[J]. Memetic Computing, 2018(10): 353-367.
[15] Yang D, Li G, Cheng G. On the efficiency of chaos optimization algorithms for global optimization[J], Chaos, Solitons and Fractals, 2007, 34: 1366-1375.
[16] Yang D, Liu Z, Zhou J. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization[J]. Communication Nonlinear Science & Numerical Simulation, 2014, 19: 1229-1246.
[17] Xu X, Rong H, Trovati M, et al. CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems[J]. Soft Computing, 2018, 22: 783-795.
[18] David A W. Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 236-252.
[19] Sheikholeslami R, Kaveh A. A survey of chaos embedded meta-heuristic algorithms[J]. International Journal of Optimization in Civil Engineering, 2013, 3(4): 617-633.
[20] Arvinder K, Saibal K, Pal A, et al. New chaotic flower pollination algorithm for unconstrained non-linear optimization functions[J]. International Journal of System Assurance and Engineering Management, 2018, 9(4): 853-865.
[21] Chang H. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model[J]. Energy Conversion and Management, 2009, 50: 105-117.
[22] 温正,孙华克. MATLAB智能算法[M]. 北京: 清华大学出版社, 2017.
[23] 高鹰,谢胜利. 混沌粒子群优化算法[J]. 计算机科学, 2004, 31(8): 13-15.
Gao Ying, Xie Shengli. Chaotic particle swarm optimization algorithm [J]. Computer Science, 2004, 31(8):13-15.
[24] 潘峰,陈杰,甘明刚. 粒子群优化算法模型分析[J].自动化学报, 2006, 32(3): 368-377.
Pan Feng, Chen Jie, Gan Minggang. Model analysis of particle swarm optimization algorithm[J]. Acta Automatica Sinica, 2006, 32(3): 368-377.
[25] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems Man, and Cybernetics Part B: Cybernetics, 2009, 39 (6): 1362-1381.
[26] Nickabadi A, Ebadzadeh M, Safabakhsh R. A novel particle swarm optimization algorithm with adaptive inertia weight [J]. Applied soft computing, 2011, 11(4): 3658-3670.
[27] 张选平,杜玉平,秦国强,等. 一种动态改变惯性权重的自适应粒子群算法[J]. 西安交通大学学报, 2005, 39(10): 1039-1042.
ZhangXuanping, Du Yuping, Qin Guoqiang, et al. An adaptive particle swarm optimization algorithm for dynamically changing inertial weights[J]. Journal of Xi 'an Jiaotong University, 2005, 39(10): 1039-1042.
[28] Shaikhi A, Ali A, Khan A H, et al. A hybrid particle swarm optimization technique for adaptive equalization[J]. Science and Engineering, 2019, 44(3): 2177-2184.
[29] Ngo T T, Sadollah A, Kim J H. A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems[J]. Journal of Computational Science, 2016, 13: 68-82.
[30] Meng A, Li Z, Yin H, et al. Accelerating particle Swarm optimization using crisscross search[J]. Information Sciences, 2016, 329: 52-72.
[31] Valderz F, Vazquez J C, Melin P, et al. Comparative study of the use of fuzzy logic in improving particles swarm optimization variants for mathematical functions using coevolution[J], Applied Soft Computing, 2017, 52: 1070-1083.
[32] YanZ, Deng C, Li B, et al. Novel particle swarm optimization and its application in calibrating the underwater transponder coordinates[J]. Mathematical Problems in Engineering, 2014, 12: 1-12.
[33] 郑伟博,张纪会. 基于单纯形法的改进量子行为的粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97-104.
Zheng Weibo, Zhang Jihui. Improved quantum behavior particle swarm optimization algorithm based on Nelder-Mead Simplex Method[J]. Complex Systems and Complexity Science, 2016, 13(2): 97-104.
[34] 肖人彬.群体智能特性分析及其对复杂系统研究的意义[J].复杂系统与复杂性科学, 2006, 3(3): 10-19.
Xiao Renbin. Analysis of cluster intelligence characteristics and its significance for complex systems [J]. Complex systems and Complexity Science, 2006, 3(3): 10-19.
[35] 王东风,孟丽.粒子群优化算法的性能分析和参数选择[J].自动化学报, 2016, 42(10): 1552-1561.
Wang Dongfeng, Meng Li. Performance analysis and parameter selection of particle swarm optimization algorithm[J]. Acta Automatica Sinica, 2016, 42(10): 1552-1561.
[1] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[2] 庞锐, 高兴宝. 基于分解的改进自适应多目标粒子群优化算法[J]. 复杂系统与复杂性科学, 2018, 15(2): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed