Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (2): 88-94    DOI: 10.13306/j.1672-3813.2018.02.011
  本期目录 | 过刊浏览 | 高级检索 |
基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制
朱伟1, 陈坤2,3, 王谦2,3, 朱弘钊2,3
1.国网湖南省输电检修分公司,湖南 衡阳 421000;
2.国网电力科学研究院武汉南瑞有限责任公司,武汉 430074;
3.电网雷击风险预防湖北省重点实验室,武汉 430074
Dynamic Analysis and Control of Fractional-Order Chua’s Circuit System Based on Adaptive Sliding Mode Control
ZHU Wei1, CHEN Kun2,3, WANG Qian2,3, ZHU Hongzhao2,3
1.Hunan Provincial Power Transmission and Maintenance Branch, Hengyang 421000, China;
2.Electric Power Research Institute, Wuhan South Company LTD, Wuhan 430074, China;
3.Hubei Key Laboratory of Power Grid Lightning Risk Prevention,Wuhan 430074, China
全文: PDF(3959 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了研究整数阶电路系统的动态行为,国内外学者做了非常巨大的努力,得出了许多重要的结论。然而,在现实生活中,更多的系统是分数阶系统。因此,研究分数阶蔡氏电路系统的动力学行为就变得非常的前沿和有意义。这篇文章主要研究对象是三阶分数阶蔡氏电路系统,通过分数阶劳斯-赫尔维兹判据,李雅普诺夫稳定性判断方法以及矩阵理论等推导出分数阶蔡氏电路系统的渐近稳定性的充分条件以及自适应控制器的选取条件。最后通过数值模拟的方法,验证了理论的有效性和合理性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱伟
陈坤
王谦
朱弘钊
关键词 分数阶稳定性自适应滑模控制蔡氏电路系统    
Abstract:In order to study the dynamic behavior of integer order system, scholars both in china and abroad have made great efforts and reached many important conclusions. However, in real life, the more existence is the fractional-order system. Therefore, The study of dynamic behavior of fractional-order Chua’s circuit system becomes very forward and meaningful. The main research object of this paper is the three dimensional fractional-order chua's circuit system, through the Routh-Hurwitz criterion, Lyapunov stability judgment method and matrix theory derived the sufficient condition of the asymptotic stability of the Chua’s circuit system and the selection of adaptive controller condition. Finally, the validity and rationality of the theory are verified by numerical simulation.
Key wordsfractional order    stability    adaptive sliding mode control    chua’s circuit system
收稿日期: 2018-03-18      出版日期: 2019-01-09
ZTFLH:  N94  
作者简介: 朱伟(1978-),男,湖南武冈人,本科,电子工程师,主要研究方向为输电线路运维检修、电路系统的稳定性分析。
引用本文:   
朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
ZHU Wei, CHEN Kun, WANG Qian, ZHU Hongzhao. Dynamic Analysis and Control of Fractional-Order Chua’s Circuit System Based on Adaptive Sliding Mode Control. Complex Systems and Complexity Science, 2018, 15(2): 88-94.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.02.011      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I2/88
[1]任艳君, 李修云. 一种改进型蔡氏电路混沌同步的仿真研究[J]. 机床与液压, 2016, 44(24):124-128.
Ren Yanjun, Li Xiuyun. A simulation study on chaotic synchronization of an improved caishi circuit [J]. Machine Tool and Hydraulic Pressure, 2016, 44(24):124-128.
[2]谢永兴, 胡云安, 林涛,等. 蔡氏混沌电路联合仿真方法研究[J]. 仪表技术, 2016(1):11-14.
Xie Yongxing, Hu Yunan, Lin Tao, et al. Study on the combined simulation method of chua's chaotic circuit [J]. Instrumentation Technology, 2016(1):11-14.
[3]闵富红, 彭光娅, 叶彪明,等. 无感蔡氏电路混沌同步控制实验[J]. 实验技术与管理, 2017(2):43-46.
Min Fuhong, Peng Guangya, Ye Bioming, et al. Chaotic synchronization control experiment of senseless caishi circuit [J]. Experimental Technology and Management., 2017(2):43-46.
[4]Bao B, Wang N, Chen M, et al. Inductor-free simplified Chua’s circuit only using two-op-amp-based realization[J]. Nonlinear Dynamics, 2016, 84(2):511-525.
[5]Rocha R, Ruthiramoorthy J, Kathamuthu T. Memristive oscillator based on Chua’s circuit: stability analysis and hidden dynamics[J]. Nonlinear Dynamics, 2017, 88(4):2577-2587.
[6]Kengne J. On the Dynamics of Chua’s oscillator with a smooth cubic nonlinearity: occurrence of multiple attractors[J]. Nonlinear Dynamics, 2016:1-13.
[7]Voliansky R, Sadovoy A. Chua's circuits synchronization as inverse dynamic's problem solution[C] Problems of Infocommunications Science and Technology. IEEE, 2017:171-172.
[8]Sarkar S S D, Chakraborty S. Nonlinear dynamics of a class of derivative controlled Chua’s circuit[J]. International Journal of Dynamics & Control, 2017, Accepted(1701):1-8.
[9]Liao X. Dynamical behavior of chua's circuit with lossless transmission line[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2016, 63(2):245-255.
[10] 杨洪勇, 徐邦海, 刘飞,等. 分数阶多智能体系统的时延一致性[J]. 复杂系统与复杂性科学, 2013, 10(3):81-85.
Yang Hongyong, Xu Banghai, Liu Fei, et al. Time delay consistency of fractional multi-agent system [J]. Complex System and Complexity Science, 2013, 10(3):81-85.
[11] 徐磊, 张成芬, 高金峰. 分数阶Chua系统中的混沌现象及其同步控制[J]. 复杂系统与复杂性科学, 2007, 4(4):45-50.
Xu Lei, Zhang Chengfen, Gao Jinfeng. Chaos and its synchronization control in fractional Chua system [J]. Science of Complex Systems and Complexity, 2007, 4(4):45-50.
[12] 高金峰, 张成芬. 基于非线性观测器实现一类分数阶混沌系统的同步[J]. 复杂系统与复杂性科学, 2007, 4(2):50-55.
Gao Jinfeng, Zhang Chengfen. Synchronization of a class of fractional order chaotic systems based on nonlinear observers [J]. Science of Complex Systems and Complexity, 2007, 4(2):50-55.
[13] 赵小国, 阎晓妹, 孟欣. 基于RBF神经网络的分数阶混沌系统的同步[J]. 复杂系统与复杂性科学, 2010, 07(1):40-46.
Zhao xiaoguo, Yan xiaomei, Meng xin. Synchronization of fractional order chaotic systems based on RBF neural networks [J]. Complex systems and complexity science, 2010, 07(1):40-46.
[14] Liu H, Li G, Zhang X, et al. Generation of fractional-order multi-scroll chaotic systems based on Chua's circuits[C] Control Conference. IEEE, 2016:808-812.
[15] Kingni S T, Pham V T, Jafari S, et al. Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form[J]. Circuits Systems & Signal Processing, 2016, 35(6):1933-1948.
[16] Sun Q, Xiao M, Tao B. Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays[J]. Neural Processing Letters, 2017,47(3):1-12.
[1] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed