Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (3): 89-93    DOI: 10.13306/j.1672-3813.2018.03.011
  本期目录 | 过刊浏览 | 高级检索 |
最优加权随机汇池网络的估计性能研究
景文腾a, 韩博a, 耿金花a, 许丽艳b, 段法兵a
青岛大学 a.复杂性科学研究所;b.电子信息学院,山东 青岛 266071
Study of Estimation Performance of Optimally Weighted Stochastic Pooling Networks
JING Wentenga, HAN Boa, GENG Jinhuaa, XU Liyanb, DUAN Fabinga
a.Institute of Complexity Science; b.School of Electronic Information, Qingdao University, Qingdao 266071, China
全文: PDF(725 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用自适应最优加权随机汇池网络对随机参数估计进行了理论和实验分析。将随机噪声优化的随机汇池网输出向量进行最优线性加权优化,给出了具有任意节点数目的随机汇池网络最优权向量以及估计信号与真实信号之间均方误差表达式。同时,在实际信号处理任务中,待估参数和噪声的统计信息经常是未知的,本文给出了基于观测数据的最优权向量和均方误差近似估计算法。理论和实验都验证了随机噪声对于随机汇池网络的优化能力,也展现了自适应最优加权随机汇池网络良好的估计性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
景文腾
韩博
耿金花
许丽艳
段法兵
关键词 随机汇池网络最优权系数参数估计噪声优化均方误差    
Abstract:In this paper, the optimally weighted stochastic pooling network is investigated for the theoretical and experimental analyses of the random parameter estimation. The stochastic pooling network is first optimized by the random noise components, and then improved by the linear optimum weight coefficients. The theoretical expressions of the optimum weight vector and the mean square error of the stochastic pooling network with an arbitrary number of nodes are deduced. In practice, since the statistical information of parameter and background noise is often unknown, the approximation estimation algorithms of the optimum weight vector and the mean square error are presented and based on the observations. Theoretical and experimental results both verify the optimization ability of random noise, and show the outstanding estimation performance of the optimally weighted stochastic pooling network.
Key wordsstochastic pooling network    optimum weight coefficient    parameter estimation    noise optimization    mean square error
收稿日期: 2018-07-30      出版日期: 2019-01-31
ZTFLH:  TN911.7  
基金资助:国家自然科学基金(61573202)
通讯作者: 段法兵(1974-),男,山东邹城人,博士,教授,主要研究方向为非线性信号处理。   
作者简介: 景文腾(1995-),男,山东菏泽人,硕士研究生,主要研究方向为自适应信号处理。
引用本文:   
景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
JING Wenteng, HAN Bo, GENG Jinhua, XU Liyan, DUAN Fabing. Study of Estimation Performance of Optimally Weighted Stochastic Pooling Networks. Complex Systems and Complexity Science, 2018, 15(3): 89-93.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.03.011      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I3/89
[1]Berger T, Gibson J D.Lossy source coding[J]. IEEE Transactions on Information Theory, 2002, 44(6):2693-2723.
[2]Zozor S., Amblard P O, Duchêne C. On pooling networks and fluctuation in suboptimal detection framework[J]. Fluctuation & Noise Letters, 2007, 7(1):39-60.
[3]Mcdonnell M D, Abbott D, Pearce C E M. An analysis of noise enhanced information transmission in an array of comparators[J]. Microelectronics Journal, 2002, 33(12):1079-1089.
[4]Mcdonnell M D, Amblard P O, Stocks N G. Stochastic pooling networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2009, (1):01012.
[5]Nguyen, T.Robust data-optimized stochastic analog-to-digital converters[J]. IEEE Transactions on Signal Processing, 2007, 55(6):2735-2740.
[6]Panzeri S, Petroni F, Petersen R S, et al. Decoding neuronal population activity in rat somatosensory cortex: role of columnar organization.[J]. Cerebral Cortex, 2003, 13(1):45-52.
[7]Hoch T,Wenning G, Obermayer K. Optimal noise-aided signal transmission through populations of neurons.[J]. Physical Review E, 2003, 68(1):011911.
[8]Nikitin A, Stocks N G, Morse R P. Enhanced information transmission with signal-dependent noise in an array of nonlinear elements.[J]. Physical Review E, 2007, 75(2):021121.
[9]Martorell F, Rubio A. Cell architecture for nanoelectronic design[J]. Microelectronics Journal, 2008, 39(8):1041-1050.
[10] Gastpar M, Vetterli M. Power, spatio-temporal bandwidth, and distortion in large sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(4):745-754.
[11] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physical A, 1981, 14(11):453.
[12] Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 2008, 70(1):45-105.
[13] Dykman M I, Mcclintock P V E. What can stochastic resonance do?[J]. Nature, 1998, 391(6665):344.
[14] Kay S. Can detectability be improved by adding noise?[J].IEEE Signal Processing Letters, 2000, 7(1):8-10.
[15] Abbott D. Overview: Unsolved problems of noise and fluctuations[C]// Chaos. 2001:526-538.
[16] Stocks N G, Allingham D, Morse R P. The application of suprathreshold stochastic resonance to cochlear implant coding [J]. Fluctuation & Noise Letters, 2002, 2(3):169-181.
[17] Hari V N,Anand G V, Premkumar A B, et al. Design and performance analysis of a signal detector based on suprathreshold stochastic resonance[J]. Signal Processing, 2012, 92(7):1745-1757.
[18] Oliaei O. Stochastic resonance in sigma-delta modulators[J]. Electronics Letters, 2003, 39(2):173-174.
[19] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Analog-to-digital conversion using suprathreshold stochastic resonance[C]// Proceedings of SPIE-The International Society for Optics and Photonics, 2005:75-84.
[20] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Quantization in the presence of large amplitude threshold noise[J]. Fluctuation & Noise Letters, 2005, 5(03):457-468.
[21] Xu L,Vladusich T, Duan F, et al. Decoding suprathreshold stochastic resonance with optimal weights[J]. Physics Letters A, 2015, 379(38): 2277-2283.
[22] Manolakis D G, Ingle V K, Kogon S M. Statistical and Adaptive Signal Processing[M]. 阔永红,译. 西安:西安电子科技大学出版社, 2012.
[1] 张雯, 吴宏伟, 于现阔, 范建伟, 苏瑞强, 郭非非, 杨洪军. 基于网络药理学的瓜蒌薤白半夏汤临床精准定位及药效成分研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 2-10.
[2] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[3] 张立, 孙华通, 潘园园, 段法兵. 人体手部运动的振荡共振辅助系统实验研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 72-78.
[4] 陈楠, 王友国, 翟其清. 多阈值系统中的阈上随机共振研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed