Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 25-30    DOI: 10.13306/j.1672-3813.2018.04.004
  本期目录 | 过刊浏览 | 高级检索 |
加权网络上随机行走的平均首到达时间与平均吸收时间
景兴利1, 赵彩红1, 凌翔2
1.济源职业技术学院,河南 济源 454650;
2.合肥工业大学汽车与交通工程学院,合肥 230009
Mean Fist Passage Time and Average Trapping Time for Random Walks on Weighted Networks
JING Xingli1, ZHAO Caihong1, LING Xiang2
1.Jiyuan Vocational and Technical College, Jiyuan 454650, China;
2.School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
全文: PDF(1190 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随机行走是复杂网络动力学研究的一个基本模型。加权网络上的随机行走也得到了学界的广泛关注。与关注于度不相关加权网络上随机行走的平均首次返回时间不同,本文通过图谱理论的方法对平均首到达时间、平均吸收时间进行了分析。分析结果表明:平均首到达时间、平均吸收时间与网络大小、吸收点度的大小、网络的权重系数、网络的平均度有密切关系。仿真结果与分析结果一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
景兴利
赵彩红
凌翔
关键词 平均首到达时间随机行走加权网络    
Abstract:Random walk is a fundamental mechanism for studying dynamics on networks. Random walk on the weighted network has also been widely concerned. In this paper, the mean first-passage time and average trapping time are studied based on the spectral graph theory for random walks on weighted networks. This is different from the Ref. [11], which is concerned with the mean first return time. The main results can be stated as following: the mean first-passage time and average trapping time are related to the size of the network, the degree of trapping point, and the weighted parameter θ and the average degree of the network. Our simulation results are in good agreement with the analytical results.
Key wordsmean first-passage time    random walks    weighted network
     出版日期: 2019-05-16
ZTFLH:  TP393  
  N941  
作者简介: 景兴利(1988),男,河南南阳人,硕士研究生,主要研究方向为复杂网络、交通规划。
引用本文:   
景兴利, 赵彩红, 凌翔. 加权网络上随机行走的平均首到达时间与平均吸收时间[J]. 复杂系统与复杂性科学, 2018, 15(4): 25-30.
JING Xingli, ZHAO Caihong, LING Xiang. Mean Fist Passage Time and Average Trapping Time for Random Walks on Weighted Networks. Complex Systems and Complexity Science, 2018, 15(4): 25-30.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.004      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/25
[1]Montroll E W. Random walks on lattices. III. calculation of first-passage times with application to exciton trapping on photosynthetic units[J]. Journal of Mathematical Physics, 1969, 10(4): 753765.
[2]Bar-Haim A, Klafter J, Kopelman R. Dendrimers as controlled artificial energy antennae[J]. Journal of the American Chemical Society, 1997, 119(26): 61976198.
[3]Bar-Haim A, Klafter J. Geometric versus energetic competition in light harvesting by dendrimers[J]. The Journal of Physical Chemistry B, 1998, 102(10): 16621664.
[4]Zhang Z, Julaiti A, Hou B, et al. Mean first-passage time for random walks on undirected networks[J]. The European Physical Journal B, 2011, 84(4): 691697.
[5]Lin Y, Julaiti A, Zhang Z. Mean first-passage time for random walks in general graphs with a deep trap[J]. The Journal of Chemical Physics, 2012, 137(12): 124104.
[6]Xing C, Zhang Y, Ma J, et al. Exact solutions for average trapping time of random walks on weighted scale-free networks[J]. Fractals, 2017, 25(2): 1750013.
[7]Bellingeri M, Cassi D. Robustness of weighted networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 489: 4755.
[8]Zhu Y X, Wang W, Tang M, et al. Social contagions on weighted networks[J]. Physical Review E, 2017, 96(1): 012306.
[9]童丽艳,刘阳,孙伟刚,等.广义伪分形网络上随机游走的平均首达时间的精确幂律[J].应用数学与计算数学学报,2012,26(2):176184.
Tong Liyan, Liu Yang, Sun Weigang, et al. Exact scaling for mean first-passage time of random walks on generalized pseudofractal web [J].Commun Appl Math Comput, 2012, 26(2):176184.
[10] 盛益彬,章忠志.加权无标度伪分形网络的谱及其应用[DB/OL].[20180126].https://doi.org/10.19678/J.ISSN.10003428.0049583.
Sheng Yibin, Zhang Zhongzhi Spectrum of weighted pseudofractal scale-free network and its application[DB/OL]. [20180126].Computer Engineering, 2018. https://doi.org/10.19678/J.ISSN.10003428.0049583.
[11] Jing X L, Ling X, Long J, et al. Mean first return time for random walks on weighted networks[J]. International Journal of Modern Physics C, 2015, 26(6): 1550068.
[12] Haynes C P, Roberts A P. Global first-passage times of fractal lattices[J]. Physical Review E, 2008, 78(4): 041111.
[13] Zhang Z, Wu B, Chen G. Complete spectrum of the stochastic master equation for random walks on treelike fractals[J]. Europhysics Letters, 2011, 96(4): 40009.
[14] Meyer B, Agliari E, Bénichou O, et al. Exact calculations of first-passage quantities on recursive networks[J]. Physical Review E, 2012, 85(2): 026113.
[15] Zhang Z, Yang Y, Gao S. Role of fractal dimension in random walks on scale-free networks[J]. The European Physical Journal B, 2011, 84(2): 331338.
[16] Zhang Z, Yang Y, Lin Y. Random walks in modular scale-free networks with multiple traps[J]. Physical Review E, 2012, 85(1): 011106.
[17] Zhang Z, Shan T, Chen G. Random walks on weighted networks[J]. Physical Review E, 2013, 87(1): 012112.
[18] Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra[J]. Physical Review E, 2013, 87(6): 062140.
[19] Wu A, Xu X, Wu Z, et al. Walks on weighted networks[J]. Chinese Physics Letters, 2007, 24(2): 577.
[20] Barrat A, Barthelemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences, 2004, 101(11): 37473752.
[21] Macdonald P J, Almaas E, Barabási A L. Minimum spanning trees of weighted scale-free networks[J]. Europhysics Letters, 2005, 72(2): 308.
[22] Kemeny J, Snell J, Finite Markov Chains[M]. New York: Springer, 1976.
[23] Grinstead C, Snell J. Introduction to Probability[M]. Providence, RI: American Mathematical Society, 1997.
[24] Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra[J]. Physical Review E, 2013, 87(6): 062140.
[25] Barabási A L, Albert R. Emergence of scaling in random networks[J]. science, 1999, 286(5439): 509512.
[1] 黄毅, 张胜, 戴维凯, 王硕, 杨芳. 加权网络的体积维数[J]. 复杂系统与复杂性科学, 2018, 15(3): 47-55.
[2] 黄毅, 张胜, 戴维凯, 王硕, 杨芳. 基于信息维数的加权网络分形特性分析[J]. 复杂系统与复杂性科学, 2018, 15(2): 26-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed