Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 39-49    DOI: 10.13306/j.1672-3813.2018.04.006
  本期目录 | 过刊浏览 | 高级检索 |
P2P网络借贷市场的非线性依赖和长记忆性研究
刘峰涛1, 徐欢, 赵袁军
东华大学旭日工商管理学院,上海 200051
P2P Network Loan Market Have Nonlinear Dependence and Long Memory Characteristics
LIU Fengtao,XU Huan,ZHAO Yuanjun
Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China
全文: PDF(1716 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采集4列主要反映中国P2P网贷行业全貌的日交易指数时间序列,初步探索P2P网贷市场的非线性动力学特征。运用BDS非线性检验方法,实证分析中国P2P网贷市场的非线性依赖性特征,进一步地,运用经典R/S分析方法和修正R/S分析方法,实证分析中国P2P网贷时间序列中是否存在长记忆性特征。结果表明存在显著的非线性依赖结构,并且其非线性结构可能来源于低维混沌过程,中国P2P网贷时间序列的产生过程均不是独立随机的,存在大量非线性,但并未显示出长记忆性特征。综合判断,P2P网贷市场目前的发展历史和演化程度尚浅,正处在从简单线性系统发展到复杂巨系统的过渡阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘峰涛
徐欢
赵袁军
关键词 P2P网络借贷市场BDS检验非线性依赖性R/S分析长记忆性非线性动力学特征    
Abstract:Data acquisition of four time series of day trading on the whole Chinese P2P lending market is completed for empirical analysis. Using BDS nonlinear test method, the nonlinear dependence of the Chinese P2P lending market is tested and confirmed,In addition, an empirical analysis about whether there exists long memory in Chinese P2P lending market is conducted, using the classical R/S analysis method and the modified R/S analysis method. Results show that time series of P2P lending is nonlinear and a maybe low-dimensional chaotic process. It is found that there doesn’t show any long memory characteristics in each of P2P time series. Still staying in the primary stage of development and evolution at present, the P2P lending market is on transition stage from simple linear system to complicated open giant system.
Key wordsP2P lending market    BDS test    nonlinear dependence    R/S analysis    long memory    nonlinear dynamics
     出版日期: 2019-05-16
ZTFLH:  N93  
基金资助:国家自然科学基金(71202065);国家社会科学基金(10BGL027)
通讯作者: 赵袁军(1988),男,山东薛城人,博士研究生,主要研究方向为财务管理与资产经营。   
作者简介: 刘峰涛(1972),男,黑龙江泰来人,博士,副教授,硕士生导师,主要研究方向为创业管理与风险投资、电子商务与冷链物流以及东方管理、项目管理与评价。
引用本文:   
刘峰涛, 徐欢, 赵袁军. P2P网络借贷市场的非线性依赖和长记忆性研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 39-49.
LIU Fengtao,XU Huan,ZHAO Yuanjun. P2P Network Loan Market Have Nonlinear Dependence and Long Memory Characteristics. Complex Systems and Complexity Science, 2018, 15(4): 39-49.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.006      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/39
[1]Luo B,Lin Z. A decision tree model for herd behavior and empirical evidence from the online P2P lending market [J]. Information Systems and E-Business Management,2013,11(1)141160.
[2]孙柏. 基于非线性依赖关系分析的人民币汇率多元描述与预测 [D]. 湖南:湖南大学,2014.
Sun Bo. The multivariate discription and forecasting of renminbi exchange rate based on nonlinear dependency analysis[D]. Hunan: Hunan University, 2014.
[3]Caraiani P. Nonlinear dynamics in CEE stock markets indices [J]. Economics Letters,2012,114(3):329331.
[4]Onali E,Goddard J. Are European equity markets efficient? new evidence from fractal analysis [J]. International Review of Financial Analysis,2011,20(2):5967.
[5]Serletis A,Rosenberg A. Mean reversion in the US stock market [J]. Chaos Solitions & Fractals,2009,40(18):20072015.
[6]Grech D,Pamula G. The local hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market [J]. Physica A: Statistical Mechanics and Its Applications,2008,387(16 17):42994308.
[7]Lee C Y. Characteristics of the volatility in the Korea composite stock price index [J]. Physica A: Statistical Mechanics and Its Applications,2009,388(18):38373850.
[8]汪冬华,索园园. 我国沪深300股指期货和现货市场的交叉相关性及其风险 [J]. 系统工程理论与实践,2014,34(3):631639.
Wang Donghua, Suo Yuanyuan. Cross-correlation and risk measurement between CSI 300 index futures and spot markets in China[J]. Systems Engineering Theory and Practice, 2014,34(3):631639.
[9]庄新田,张鼎,苑莹,等. 中国股市复杂网络中的分形特征 [J]. 系统工程理论与实践,2015,35(02):273282.
Zhuang Xintian, Zhang Ding, Yuan Ying, et al. Fractal characteristic of the Chinese stock market complex network[J]. Systems Engineering Theory and Practice, 2015,35(2):273282.
[10] 孙柏,李小静. 基于GARCH类模型的人民币汇率非线性依赖关系研究 [J]. 财经理论与实践,2016,37(199):4147.
Sun Bo, Li Xiaojing. The study of the nonlinear dependency of the RMB exchange rate based on GARCH models[J]. The Theory and Practice of Finance and Economics,2016,37(199):4147.
[11] 蒋勇,吴武清,叶五一,等. 股指期货基差的非线性特征和均值回复机制研究 [J]. 中国科学技术大学学报,2013,43(12):989996.
Jiang Yong, Wu Wuqing, Ye Wuyi, et al. Nonlinear features and mean reversion mechanism research based on the basis of stock index futures[J]. Journal of University of Science and Technology of China, 2013,43(12):989996.
[12] Brock W A,Dechert W,Scheinkman J. A test for independence based on the correlation dimension [J]. Econometric Reviews,1996,15(3):197235.
[13] Lo A W. Long-term memory in stock market prices [J]. Econometrica,1991,59(5):12791313.
[14] Bollerslev T,Zhou H. Volatility puzzles: a simple framework for gauging return-volatility regressions [J]. Journal of Econometrics,2006,131(12):123150.
[1] 章平, 黄傲霜. 引入异质性社会偏好的利他行为决策及激励机制比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 19-26.
[2] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed