Relational Hierarchical Clustering Algorithm Based on Hausdorff Distance
TANG Sihui1,2, ZHUANG Dong1, LIU Xiao3
1.School of Business Administration, South China University of Technology, Guangzhou 510640, China; 2.College of Engineering and Computer Science, Australian National University,Canberra 0200,Australian; 3.School of Management, Jinan University, Guangzhou 510632, China
Abstract:The clustering algorithm of relational data is very important for communication research. Firstly, uses the iterative system to metaphorize the individual structure changing, expresses the distance between the output and the state, and also uses the node with the highest structural level sequence to represent the cluster; then introduces the Hausdorff distance into the DBSCAN algorithm. Thus, the summation operator that merges with the same structure and the union operator of the scale on the hierarchy become compressible. We use the data of complex network researchers to evaluate the effectiveness of the algorithm. The layer of cooperation network has different network structure; the keywords have high transmission efficiency in the level 2; the reciprocal relationship has the most effecton knowledge dissemination. These new findings prove that the algorithm can reflect the influence of the network structure on the propagation effect by introducing the compressible measure Hausdorff distance of the Hutchinson operator. The design idea of the algorithm is correct.
[1]Watts D J. A twenty-first century science[J]. Nature, 2007, 445(7127):489. [2]Nowak M A. Five rules for the evolution of cooperation[J]. Science, 2006, 314(5805):15601563. [3]Rao V R, Sabavala D J. Inference of hierarchical choice processes from panel data[J]. Journal of Consumer Research, 1981, 8(1): 8596. [4]Weeks D G, Bentler P M. Restricted multidimensional scaling models for asymmetric proximities[J]. Psychometrika, 1982, 47(2): 201208. [5]Tobler, Waldo. Spatial interaction patterns[J]. Journal of Environmental Systems, 1975,6:271301 [6]Krishna K, Krishnapuram R. A clustering algorithm for asymmetrically related data with applications to text mining[C]∥Proceedings of the Tenth International Conference on Information and Knowledge Management. Atlanta, Georgia, USA: ACM, 2001: 571573. [7]韩忠明, 陈妮, 张慧, 等. 一种非对称距离下的层次聚类算法[J]. 模式识别与人工智能, 2014, 27(5): 410416. [8]陈玉福. 鄂尔多斯高原沙地草地的生态异质性[D]. 北京:中国科学院植物研究所, 2001. [9]Odum H T. Self-organization, transformity, and information[J]. Science, 1988, 242(4882):11321139. [10] 陈宇新. 树木间相互作用对热带森林结构和功能的影响[D]. 广州:中山大学, 2016. [11] Ester M, Kriegel H P, Xu X. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]∥International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: AAAI Press, 1996:226231. [12] Han Jiawei, KamberMicheline. 数据挖掘:概念与技术[M]. 北京:机械工业出版社, 2007. [13] Palla G, Derényi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814824. [14] 海因茨·奥托·佩特根, 哈特穆特·于尔根斯, 迪特马尔·绍柏. 混沌与分形[M]. 北京:国防工业出版社, 2008. [15] Goel S, Watts D J, Goldstein D G. The structure of online diffusion networks[C]∥ACM Conference on Electronic Commerce. Valencia, Spain: ACM, 2012:623638. [16] 唐四慧, 陈鹤鑫. 基于种族隔离模型的传播过程分析范式的架构[J]. 华南理工大学学报(社会科学版), 2017, 19(3):1823. [17] Newman, M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical review E, 74 (3): 036104. [18] Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970, 49(2): 291307. [19] Newman M. Modularity and community structure in networks[C]∥APS March Meeting. American Physical Society. Baltimore, Maryland, USA: 2006:85778582. [20] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113. [21] Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191):98. [22] Newman M E J. Fast algorithm for detecting community structure in networks.[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69(6):066133. [23] 陈彦光. 分形城市系统的空间复杂性研究[D]. 北京:北京大学, 2004. Chen Yanguang. Studies on spatial complexity of fractal urban systems[D]. Beijing: Peking University, 2004. [24] 唐四慧, 陈鹤鑫. 网络嵌入视角下达成注意力经济的实证与仿真分析[J]. 华南理工大学学报:社会科学版, 2016, 18(6):3540. [25] Huang J, Sun H, Han J, et al.Shrink: a structural clustering algorithm for detecting hierarchical communities in networks[C]∥Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto, Ontario, Canada ACM,2010:219228. [26] Fortunato S. Community detection in graphs[J]. Physics Reports, 2009, 486(3):75174. [27] 李博.生态学[M]. 北京:高等教育出版社, 2000. [28] 吴昌广,周志翔, 王鹏程,等. 景观连接度的概念, 度量及其应用[J].生态学报, 2010,7:19031910.