Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 60-68    DOI: 10.13306/j.1672-3813.2018.04.008
  本期目录 | 过刊浏览 | 高级检索 |
基于Hausdorff距离的关系层次聚类算法
唐四慧1, 2, 庄东1, 刘潇3
1.华南理工大学工商管理学院,广州 510640;
2.澳大利亚国立大学计算机科学与工程学院,澳大利亚,堪培拉 0200;
3.暨南大学管理学院,广州 510632
Relational Hierarchical Clustering Algorithm Based on Hausdorff Distance
TANG Sihui1,2, ZHUANG Dong1, LIU Xiao3
1.School of Business Administration, South China University of Technology, Guangzhou 510640, China;
2.College of Engineering and Computer Science, Australian National University,Canberra 0200,Australian;
3.School of Management, Jinan University, Guangzhou 510632, China
全文: PDF(1179 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 关系数据的聚类算法对于传播研究意义重大,首先运用迭代系统隐喻个体结构的变化,用输出与状态的包含距离表示关系的非对称同时也确定拥有最高结构等级序列的节点来代表簇;再将Hausdorff距离引入DBSCAN算法,使得同结构节点进行合并的加和算子和层次上卷的并算子变得可压缩。运用复杂网络研究人员的数据对算法的有效性进行了评估,分层后的人员合作网具有不同的网络结构特征;关键词在层次2网络中的传播效率高;互惠关系在知识传播中的作用最大。新的发现证明算法通过引入Hutchinson算子的可压缩测度Hausdorff距离使得网络结构对传播效果的影响得以体现,该算法的设计思路是正确的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐四慧
庄东
刘潇
关键词 关系的非对称性Hausdorff距离并算子凝聚层次聚类    
Abstract:The clustering algorithm of relational data is very important for communication research. Firstly, uses the iterative system to metaphorize the individual structure changing, expresses the distance between the output and the state, and also uses the node with the highest structural level sequence to represent the cluster; then introduces the Hausdorff distance into the DBSCAN algorithm. Thus, the summation operator that merges with the same structure and the union operator of the scale on the hierarchy become compressible. We use the data of complex network researchers to evaluate the effectiveness of the algorithm. The layer of cooperation network has different network structure; the keywords have high transmission efficiency in the level 2; the reciprocal relationship has the most effecton knowledge dissemination. These new findings prove that the algorithm can reflect the influence of the network structure on the propagation effect by introducing the compressible measure Hausdorff distance of the Hutchinson operator. The design idea of the algorithm is correct.
Key wordsasymmetry of relations    hausdorff distance    union operator    agglomerative hierarchical clustering
     出版日期: 2019-05-16
ZTFLH:  G20  
基金资助:国家自然科学基金(71401056);教育部人文社科项目(13YJC630147);国家留学基金委资助(201706155067)
通讯作者: 刘潇(1971),女,云南昆明人,博士,副教授,主要研究方向为复杂网络、企业管理。   
作者简介: 唐四慧(1974),女,湖南衡阳人,博士,副教授,主要研究方向复杂网络、知识传播。
引用本文:   
唐四慧, 庄东, 刘潇. 基于Hausdorff距离的关系层次聚类算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 60-68.
TANG Sihui, ZHUANG Dong, LIU Xiao. Relational Hierarchical Clustering Algorithm Based on Hausdorff Distance. Complex Systems and Complexity Science, 2018, 15(4): 60-68.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.008      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/60
[1]Watts D J. A twenty-first century science[J]. Nature, 2007, 445(7127):489.
[2]Nowak M A. Five rules for the evolution of cooperation[J]. Science, 2006, 314(5805):15601563.
[3]Rao V R, Sabavala D J. Inference of hierarchical choice processes from panel data[J]. Journal of Consumer Research, 1981, 8(1): 8596.
[4]Weeks D G, Bentler P M. Restricted multidimensional scaling models for asymmetric proximities[J]. Psychometrika, 1982, 47(2): 201208.
[5]Tobler, Waldo. Spatial interaction patterns[J]. Journal of Environmental Systems, 1975,6:271301
[6]Krishna K, Krishnapuram R. A clustering algorithm for asymmetrically related data with applications to text mining[C]∥Proceedings of the Tenth International Conference on Information and Knowledge Management. Atlanta, Georgia, USA: ACM, 2001: 571573.
[7]韩忠明, 陈妮, 张慧, 等. 一种非对称距离下的层次聚类算法[J]. 模式识别与人工智能, 2014, 27(5): 410416.
[8]陈玉福. 鄂尔多斯高原沙地草地的生态异质性[D]. 北京:中国科学院植物研究所, 2001.
[9]Odum H T. Self-organization, transformity, and information[J]. Science, 1988, 242(4882):11321139.
[10] 陈宇新. 树木间相互作用对热带森林结构和功能的影响[D]. 广州:中山大学, 2016.
[11] Ester M, Kriegel H P, Xu X. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]∥International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: AAAI Press, 1996:226231.
[12] Han Jiawei, KamberMicheline. 数据挖掘:概念与技术[M]. 北京:机械工业出版社, 2007.
[13] Palla G, Derényi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814824.
[14] 海因茨·奥托·佩特根, 哈特穆特·于尔根斯, 迪特马尔·绍柏. 混沌与分形[M]. 北京:国防工业出版社, 2008.
[15] Goel S, Watts D J, Goldstein D G. The structure of online diffusion networks[C]∥ACM Conference on Electronic Commerce. Valencia, Spain: ACM, 2012:623638.
[16] 唐四慧, 陈鹤鑫. 基于种族隔离模型的传播过程分析范式的架构[J]. 华南理工大学学报(社会科学版), 2017, 19(3):1823.
[17] Newman, M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical review E, 74 (3): 036104.
[18] Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970, 49(2): 291307.
[19] Newman M. Modularity and community structure in networks[C]∥APS March Meeting. American Physical Society. Baltimore, Maryland, USA: 2006:85778582.
[20] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[21] Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191):98.
[22] Newman M E J. Fast algorithm for detecting community structure in networks.[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69(6):066133.
[23] 陈彦光. 分形城市系统的空间复杂性研究[D]. 北京:北京大学, 2004.
Chen Yanguang. Studies on spatial complexity of fractal urban systems[D]. Beijing: Peking University, 2004.
[24] 唐四慧, 陈鹤鑫. 网络嵌入视角下达成注意力经济的实证与仿真分析[J]. 华南理工大学学报:社会科学版, 2016, 18(6):3540.
[25] Huang J, Sun H, Han J, et al.Shrink: a structural clustering algorithm for detecting hierarchical communities in networks[C]∥Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto, Ontario, Canada ACM,2010:219228.
[26] Fortunato S. Community detection in graphs[J]. Physics Reports, 2009, 486(3):75174.
[27] 李博.生态学[M]. 北京:高等教育出版社, 2000.
[28] 吴昌广,周志翔, 王鹏程,等. 景观连接度的概念, 度量及其应用[J].生态学报, 2010,7:19031910.
[1] 李杰, 张睿, 徐勇. 虚假口碑信息控制演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed