Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 77-84    DOI: 10.13306/j.1672-3813.2018.04.010
  本期目录 | 过刊浏览 | 高级检索 |
基于多子网复合复杂网络模型的物质扩散推荐算法
周双, 宾晟, 邵峰晶, 孙更新
青岛大学数据科学与软件工程学院,山东 青岛 266071
Mass Diffusion Recommendation Algorithm Based on Multi-Subnet Composited Complex Network Model
ZHOU Shuang, BIN Sheng, SHAO Fengjing, SUN Gengxin
School of data science and software engineering, Qingdao University, Qingdao 266071, China
全文: PDF(1729 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 融合社交网络的社会化推荐算法是目前推荐系统中普遍采用的方法。在现实的社交网络中,用户间存在多种关系,而每种关系对于推荐的影响是不同的,因此在推荐中单纯引入某一种社交关系必然影响推荐结果的准确率。本文基于多子网复合复杂网络模型,通过在用户商品二部图上加载多关系社交网络,构建多关系复合网,提出了基于多关系复合网的物质扩散推荐算法。在真实的数据集Epinions和FilmTrust上的实验结果表明,加入两种社交关系的推荐算法比加入一种社交关系的推荐算法及传统的物质扩散算法在推荐准确率方面有显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周双
宾晟
邵峰晶
孙更新
关键词 多子网复合复杂网络物质扩散算法多关系社交网络推荐算法    
Abstract:Social recommendation algorithm based on social network is a popular method in recommendation system at present. However, there are many relationships among users in real social networks, and each relationship has different effects on recommendation. Therefore, the introduction of a social relationship in recommendation will inevitably affect the accuracy of recommendation results. In this paper, based on the multi-subnet composited complex network model, a multi-relationship composited network is constructed on the user-item bipartite graph, and a mass diffusion recommendation algorithm based on multi-relationship composited network is proposed. The experimental results on the real datasets Epinions and FilmTrust show that the recommendation algorithm with two kinds of social relationships is better than the recommendation algorithm with one kind of social relationship and traditional mass diffusion algorithm in the accuracy of recommendation.
Key wordsmulti-subnet composited complex network    mass diffusion algorithm    multi-relationship social network    recommendation algorithm
     出版日期: 2019-05-16
ZTFLH:  N94  
基金资助:山东省自然基金面上项目(ZR2017MG011);教育部人文社会科学研究青年项目(15YJC860001);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978),男,山东青岛人,博士,副教授,主要研究方向为复杂网络中的传播动力学及相关传播模型。   
作者简介: 周双(1993),女,山东烟台人,硕士研究生,主要研究方向为复杂网络中的传播动力学及相关传播模型。
引用本文:   
周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
ZHOU Shuang, BIN Sheng, SHAO Fengjing, SUN Gengxin. Mass Diffusion Recommendation Algorithm Based on Multi-Subnet Composited Complex Network Model. Complex Systems and Complexity Science, 2018, 15(4): 77-84.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.010      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/77
[1]Bawden D, Holtham C, Courtney N. Perspectives on information overload [J]. Aslib Proceedings, 2013, 51(8):249255.
[2]Hwang M I, Lin J W. Information dimension, information overload and decision quality [J]. Journal of Information Science, 1999, 25(3): 213218.
[3]Edmunds A, Morris A. The problem of information overload in business organisations: a review of the literature [J]. International Journal of Information Management, 2000, 20(1):1728.
[4]Eppler M J, Mengis J. The Concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines [J]. The Information Society, 2004, 20(5):325344.
[5]Lee B K, Lee W N. The effect of information overload on consumer choice quality in an on-line environment[J]. Psychology & Marketing, 2010, 21(3):159183.
[6]Lü L, Medo M, Chi H Y, et al. Recommender systems [J]. Physics Reports, 2012, 519(1):149.
[7]Guo Q, Song W, Hou L, et al. Effect of the time window on the heat-conduction information filtering medel [J]. Physica A: Statistical Mechanics and Its Applications, 2014, 401(5):1521.
[8]陈志敏, 李志强. 基于用户特征和项目属性的协同过滤推荐算法[J]. 计算机应用, 2011, 31(7):17481750.
Chen Zhimin, Li Zhiqiang. Collaborative filtering recommendation algorithm based on user characteristics and item attributes[J]. Journal of Computer Applications, 2011, 31(7):17481750.
[9]Zhang Y M, Wang L, Cao H H, et al. Recommendation algorithm based on user-interest-item tripartite graph[J]. Pattern Recognition and Artificial Intelligent, 2015, 28(10):913921.
[10] Herlocker J L, Konstan J A, Terveen L G. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 553.
[11] Pazzani M J. A framework for collaborative, content-based and demographic filtering[J]. Artificial intelligence review, 1999, 13(5): 393408.
[12] 郭宁宁, 王宝亮, 侯永宏,等. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018,12(2):208217.
Guo Ningning, Wang Baoliang, Hou Yonghong, et al. Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2018,12(2):208217.
[13] 周志华, 王珏. 机器学习及其应用[M]. 北京:清华大学出版社, 2007.
[14] 王荣洋,鞠久鹏,李寿山,等.基于CRFs的评价对象抽取特征研究[J].中文信息学报,2012,26(2):5661.
Wang Rongyang, Ju Jiupeng, Li Shoushan, et al. Feature engineering for CRFs based opinion target extraction [J]. Journal of Chinese Information Processing,2012,26(2):5661.
[15] 郭强, 宋文君, 胡兆龙,等. 基于流行度的非平衡物质扩散推荐算法[J]. 计算机应用, 2015, 35(12):35023505.
Guo Qiang, Song Wenjun, Hu Zhaolong, et al. Non-equilibrium mass diffusion recommendation algorithm based on popularity [J]. Journal of Computer Applications, 2015, 35(12):35023505.
[16] 胡吉明, 林鑫. 基于用户资源词汇三部图的社会化推荐算法设计与实现[J]. 情报理论与实践, 2016,39(3):130134.
Hu Jiming, Lin Xin. Design and implementation of recommendation algorithm based on user-socialized resource-vocabulary three-part graph [J]. Information studies: Theory & Application,2016,39(3):130134.
[17] Zhou T, Ren J,Medo M, et al.Bipartite network projection and personal recommendation [J]. Physical Review E, 2007, 76(4):046115.
[18] Watts D, Strogatz S. Collective dynamics of small-world networks[J]. Nature, 1998, 393 (6684): 440442.
[19] Barabási A L, Bonabeau E. Scale-free networks [J]. Scientific American, 2003, 288(5):60.
[20] 隋毅. 多子网复合复杂网络模型及其相关性质的研究[D]. 青岛:青岛大学, 2012.
Sui Yi. Research on multi-subnet composited complex network and its related properties [D]. Qingdao: Qingdao University, 2012.
[21] 邵峰晶, 孙仁诚, 李淑静,等. 多子网复合复杂网络及其运算研究[J]. 复杂系统与复杂性科学, 2012,7(4):2025.
Shao Fengjing, Sun Rencheng, Li Shujing. Research of multi-subnet composited complex network and its operation [J]. Complex Systems and Complexity Science, 2012, 7(4): 2025.
[22] 隋毅, 邵峰晶, 孙仁诚,等. 基于向量空间的多子网复合复杂网络模型动态组网运算的形式描述 [J]. 软件学报, 2015, 26(8): 20072019.
Sui Yi, Shao Fengjing, Sun Rencheng, et al. Formalized descriptions of dynamic reorganizations of multi-subnet composited complex network based on vector space [J]. Journal of Software, 2015, 26(8): 20072019.
[23] 宾晟, 孙更新. 基于多子网复合复杂网络模型的多关系社交网络重要节点发现算法 [J]. 南京大学学报(自然科学), 2017, 53(2): 378385.
Bin Sheng, Sun Gengxin. Important node detection algorithm for multiple relationships online social network based on multi-subnet composited complex network model [J]. Journal of Nanjing University (Natural Sciences), 2017, 53(2): 378385.
[24] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2):163175.
Zhu Yuxiao, Lv Linyuan. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China.,2012,41(2):163175.
[25] Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J].Proceedings of the National Academy of Sciences,2010,107( 10):45114515.
[26] Yang X, Yang G, Yong L, et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014, 41(5):110.
[1] 郭强, 岳强, 李仁德, 刘建国. 入用户情感的高阶奇异值分解推荐算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed