Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (1): 36-42    DOI: 10.13306/j.1672-3813.2019.01.004
  本期目录 | 过刊浏览 | 高级检索 |
量子粒子群优化社区发现方法
杨忠保1,2, 楚杨杰2, 洪叶2, 江登英2
1.黔南民族师范学院数学统计学院,贵州 都匀 558000;
2.武汉理工大学理学院,武汉430070
Quantum-Behaved Discrete Particle Swarm Optimization for Complex Network Clustering
YANG Zhongbao1,2, CHU Yangjie2, HONG Ye2, JIANG Dengying2
1.School of Mathematics and Statistic, Qiannan Normal University for Natinalities, Douyun 558000, China;
2.Wuhan University of Technology,Wuhan 430070,China
全文: PDF(1614 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 社区结构是复杂网络的一种重要的特征,为了解决基于模块度优化的社区发现方法现存在的分辨率限制问题,提出一种离散量子粒子群优化社区发现方法(NQD-PSO),将核心节点与邻居的普通节点构成模体,该模体为量子粒子群算法的初始值。同时,构造模体加权社区聚类函数为算法的适应性函数,该函数利用了三角形模体来判断社区的稳定性度量问题,从而量化社区结构稳定性。采用压缩因子函数调节全局和局部搜索模型,结合量子粒子群算法,使该算法全局收敛。算法采用模体有序表编码方式,并在模拟和真实数据集上的实验结果均表明,相比于其他算法,NQD-PSO算法可以挖掘更高质量的社区结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨忠保
楚杨杰
洪叶
江登英
关键词 社区发现量子粒子群核心节点优化    
Abstract:Community structure is one of the most important features of complex network. In order to solve the problem of resolution limit of modularity optimization methods, a quantum-behaved discrete particle swarm optimization for complex network clustering is proposed in non-overlapping community detection algorithm (NQD-PSO). The core node and neighborly common nodes are constructed asa motif, which is the initial value of the quantum particle swarm optimization algorithm. At the same time, constructing the motif weighted community clustering function as the adaptive function of the algorithm, while it can use the triangular model to judge the problem of community stability measurement for quantifying the stability of community then the compression factor is adopted to adjust the global and local search model, which makes the algorithm globally converge by combining with quantum particle swarm optimization. Compared with other algorithms, NQD-PSO algorithm uses motif orderly table coding method, and experimental results on both synthetic and real datasets show thatthe NQD-PSO algorithm can mine more high-quality community structures.
Key wordscommunity detection    quantum-behaved particle swarm    core node    optimization
收稿日期: 2018-02-24      出版日期: 2019-07-04
ZTFLH:  TP399  
基金资助:中央高校基本科研业务费专项资金(2017IB014);贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]429)
通讯作者: 楚杨杰(1969),男,湖南郝州人,博士,副教授,主要研究方向为复杂系统及建模。   
作者简介: 杨忠保(1988),男,贵州从江人,硕士,工程师,主要研究方向为复杂性分析与评价。
引用本文:   
杨忠保, 楚杨杰, 洪叶, 江登英. 量子粒子群优化社区发现方法[J]. 复杂系统与复杂性科学, 2019, 16(1): 36-42.
YANG Zhongbao, CHU Yangjie, HONG Ye, JIANG Dengying. Quantum-Behaved Discrete Particle Swarm Optimization for Complex Network Clustering. Complex Systems and Complexity Science, 2019, 16(1): 36-42.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.01.004      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I1/36
[1] 周旭.复杂网络中社区发现算法研究[D].吉林大学,2016.Zhou Xu,Research on community detection algorithms in complex networks[D].JiLinJilin University,2016.
[2] 尚敬文,王朝坤等.基于深度稀疏自动编码器的社区发现算法[J].软件学报,2017,28(3):648662ShangJingwen,Wang Chaokun,et al.Commu-nity detection algorithm based on deep sparse autoencoder[J].Journal of Softwre,2017,28(3):648662.
[3] Pizzuti C. GA-net: A genetic algorithm for community detection in social networks[C]// International Conference on Parallel Problem Solving From Nature: PPSN X.Springer-Verlag,2008:10811090.
[4] Pizzuti C. A multi-objective genetic algorithm for community detection in networks[C]// IEEE International Conference on TOOLS with Artificial Intelligence. IEEE Computer Society,2009:379386.
[5] 白云,任国霞.基于粒子群优化的复杂网络社区挖掘[J].计算机工程,2015,41(3):177181.Bai Yun,Ren Guoxia. Complex network comm-unity mining based on particle swarm optimization[J].Computer Engineering,2015,41(3):177181.
[6] Gong M, Cai Q, Chen X, et al. Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition[J]. IEEE Transactions on Evolutionary Computation,2014,18(1):8297.
[7] Li L, Jiao L, Zhao J, et al. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering[J].Pattern Recognition,2017,63:114.
[8] 黄发良,张师超,朱晓峰.基于多目标优化的网络社区发现方法[J].软件学报,2013,24(9):2062-2077.Huang Faliang, Zhang Shichao,Zhu Xiaofeng.Discovering network community based on multi-objective optimization[J].Journal of Software,2013,24(9):20622077.
[9] 韩忠明,谭旭升,陈炎,等.NCSS:一种快速有效的复杂网络社团划分算法[J].中国科学:信息科学,2016,46(4):431444.Han Zhongming,Tan Xusheng, et al. NCSS:an effective and efficiet complex network community detection algorithm[J].Scientia Sinica informations,2016,46(4):431444.
[10] Prat-Pérez A, Dominguez-Sal D, Brunat J M. Shap-ing communities out of triangles[J].Computer Science,2012:16771681.
[11] 张成兴.时变压缩因子粒子群算法[J].计算机工程与应用,2015,51(23):5964Zhang Chengxing.Particle swarm optimization based on time varying constrict factor[J].Computer Engineering and Applications,2015,51(23):5964.
[12] 方伟,孙俊,谢振平,等.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报,2010,59(6):36863694.Fang Wei, Sun Jun, Xie Zhenping, et al. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter[J].Acta Physica Sinica,2010,59(6):36863694.
[13] Handl J,Knowles J.An evolutionary approach to multiobjective clustering[J].IEEE Transactions on Evolutionary Computation,2007,11(1):5676.
[14] Gómez S, Jensen P, Arenas A. Analysis of community structure in networks of correlated data[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2008,80(2):016114.
[15] Lancichinetti A,Fortunato S, Radicchi F.Benchmark graphs for testing community detection algorithms.[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008,78(4Pt2):04611
[16] Girvan M,Newman M E J.Community structure in social andbiological networks[J].Proc of National Academy of Science,2002,9(12):78217826
[1] 薄桂华, 黄敏. 考虑拖期风险的第四方物流路径优化问题模型与求解[J]. 复杂系统与复杂性科学, 2018, 15(3): 66-74.
[2] 景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
[3] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[4] 肖婧, 张永建, 许小可. 复杂网络模糊重叠社区检测研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 8-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed