Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (2): 85-94    DOI: 10.13306/j.1672-3813.2019.02.010
  本期目录 | 过刊浏览 | 高级检索 |
基于匹配稳态随机共振的轴承故障诊断方法
池阔1, 康建设1, 张星辉1, 杨志远1, 赵斐1,2
1.陆军工程大学石家庄校区,石家庄 050000;
2.东北大学工商管理学院,沈阳 110819
Bearing Fault Diagnosis Based on Matched-Stable Stochastic Resonance
CHI Kuo1, KANG Jianshe1, ZHANG Xinghui1, YANG Zhiyuan1, ZHAO Fei1, 2
1.Shijiazhuang Branch, Army Engineering University of PLA, Shijiazhuang 050000, China;
2.School of Business Administration, Northeastern University, Shenyang 110819, China
全文: PDF(2211 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 轴承是旋转机械中最广泛使用的零件之一。由于高速重载等因素影响,轴承故障经常发生,导致设备停机,甚至造成人员伤亡。但轴承故障诱导产生的冲击相对微弱,不易探测。为有效探测轴承微弱故障,提出一种新的基于匹配稳态随机共振的轴承故障诊断方法。相比于传统的双稳态等定稳态随机共振,匹配稳态随机共振的势函数的结构和势阱数量可根据复杂多样的轴承振动信号进行调整,更加有利于增强微弱的轴承故障冲击信号。通过数值仿真,分析了匹配稳态随机共振各参数对共振输出的影响及其抗噪鲁棒性。通过轴承内圈故障案例和滚动体故障案例,验证所提方法对轴承故障诊断的有效性,且效果优于传统的双稳态随机共振。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
池阔
康建设
张星辉
杨志远
赵斐
关键词 故障诊断轴承匹配稳态势函数随机共振    
Abstract:Bearing is one of the most widely used parts in rotating machinery. However, the bearing often fails because of the poor work environment such as high speed and heavy load, which results the equipment stops and even casualties. The fault-induced impulses are too weak to be detected. A novel matched-stable stochastic resonance (MSR) is proposed for bearing fault diagnosis. Unlike the traditional fixed-stable stochastic resonance like the bi-stable stochastic resonance, the potential structure and potential well number of the MSR are changed according to the complicated and diverse vibration signals, which is more benefit for the enhancement of the weak bearing fault-induced impulses. Through the bearing inner ring fault case and rolling element fault case, the proposed method is effective for bearing fault diagnosis and better than the traditional bi-stable stochastic resonance.
Key wordsfault diagnosis    bearing    matched-stable potential    stochastic resonance
收稿日期: 2019-05-04      出版日期: 2019-08-19
ZTFLH:  TN911.7  
作者简介: 池阔(1990),男,安徽界首人,博士研究生。主要研究方向为装备维修保障理论与技术、故障预测与健康管理
引用本文:   
池阔, 康建设, 张星辉, 杨志远, 赵斐. 基于匹配稳态随机共振的轴承故障诊断方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 85-94.
CHI Kuo, KANG Jianshe, ZHANG Xinghui, YANG Zhiyuan, ZHAO Fei. Bearing Fault Diagnosis Based on Matched-Stable Stochastic Resonance. Complex Systems and Complexity Science, 2019, 16(2): 85-94.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.02.010      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I2/85
[1] Laha S K. Enhancement of fault diagnosis of rolling element bearing using maximum kurtosis fast nonlocal means denoising[J]. Measurement, 2017, 100: 157-163.
[2] Zhang X, Kang J, Bechhoefer E, et al. Enhanced bearing fault detection and degradation analysis based on narrowband interference cancellation[J]. International Journal of Systems Assurance Engineering and Management, 2014, 5(4): 645-650.
[3] Bessous N, Zouzou S E, Bentrah W, et al. Diagnosis of bearing defects in induction motors using discrete wavelet transform[J]. International Journal of Systems Assurance Engineering and Management, 2018, 9(2): 335-343.
[4] 段法兵. 参数调节随机共振在数字信号传输中的应用[D]. 浙江:浙江大学, 2002.
[5] Kim H, Tai W, Parker J, et al. Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires[J]. Mechanical Systems and Signal Processing, 2019, 122: 769-785.
[6] Kojima N, Lamsal B, Matsumoto N, et al. Proposing autotuning image enhancement method using stochastic resonance[J]. Electronics and Communications in Japan, 2019, 102(4): 1-12.
[7] Li Q, Wang T, Leng Y, et al. Engineering signal processing based on adaptive step-changed stochastic resonance[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2267-2279.
[8] Zhang X, Hu N, Cheng Z, et al. Enhanced detection of rolling element bearing fault based on stochastic resonance[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1287-1297.
[9] Liu J, Leng Y, Lai Z, et al. Multi-frequency signal detection based on frequency exchange and re-scaling stochastic resonance and its application to weak fault diagnosis[J]. Sensors, 2018, 18(5): 1325.
[10] Lu S, He Q, Wang J. A review of stochastic resonance in rotating machine fault detection[J]. Mechanical Systems and Signal Processing, 2019, 116: 230-260.
[11] Li J, Li M, Zhang J. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution[J]. Journal of Sound and Vibration, 2017, 401: 139-151.
[12] Chi K, Kang J, Zhang X, et al. Bearing fault diagnosis based on stochastic resonance with cuckoo search[J]. International Journal of Performability Engineering, 2018, 14(3): 413-424.
[13] Shi P, Yuan D, Han D, et al. Stochastic resonance in a time-delayed feedback tristable system and its application in fault diagnosis[J]. Journal of Sound and Vibration, 2018, 424: 1-14.
[14] Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance[J]. Review of Modern Physics, 1998, 70(1): 223-287.
[15] Lei Y, Qiao Z, Xu X, et al. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 94: 148-164.
[16] Wang J, He Q, Kong F. Adaptive multiscale noise tuning stochastic resonance for health diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(2): 564-577.
[17] Zhou P, Lu S, Liu F, et al. Novel synthetic index-based adaptive stochastic resonance method and its application in bearing fault diagnosis[J]. Journal of Sound and Vibration, 2017, 391: 194-210.
[18] Yang X, Deb S. Cuckoo search via lévy flights[C]∥World Congress on Nature and Biologically Inspired Computing, Coimbatore, India, 2009:210-214.
[19] Chi K, Kang J, Wu K, et al. Bayesian parameter estimation of weibull mixtures using cuckoo search[C]∥8-th International Conference on Intelligent Networking and Collaborative Systems, Ostrava, Czech Republic, 2016: 411-414.
[20] Malik M, Ahsan F, Mohsin S. Adaptive image denoising using cuckoo algorithm[J]. Soft Computing, 2016, 20(3): 925-938.
[1] 陈楠, 王友国, 翟其清. 多阈值系统中的阈上随机共振研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 71-76.
[2] 潘园园, 张力, 段玲玲, 段法兵. 离散Hopfield神经网络的手写数字识别研究[J]. 复杂系统与复杂性科学, 2018, 15(1): 75-79.
[3] 李恒, 王友国, 翟其清. 阈值阵列系统中TCM编译码的随机共振现象[J]. 复杂系统与复杂性科学, 2018, 15(1): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed