Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 1-21    DOI: 10.13306/j.1672-3813.2019.03.001
  本期目录 | 过刊浏览 | 高级检索 |
人类时效交互网络的建模与传播研究综述
李靖a, 李聪, 李翔
复旦大学a.电子工程系自适应网络与控制实验室; b.信息科学与工程学院智慧网络与系统研究中心,上海 200433
A Review on Modeling and Propagation of Human Temporal Contact Networks
LI Jinga, LI Cong, LI Xiang
a. Adaptive Network and Control Lab., Department of Electronic Engineering; b. Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
全文: PDF(2115 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 时效人类交互网络有自身的动力学性质,可以通过定义相应的拓扑和时效特性来刻画;另一方面,时效网络所固有的结构特征对其上的动力学过程,如流行病传播过程,具有重要影响。本文从人类交互的类型与表示方法、时效网络的结构特征(网络拓扑、时效特征和时间尺度)、模型及时效网络中的传播动力学等多方面对时效人类交互网络的研究进展进行综述,并对目前的研究现状进行分析,展望了该领域未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李靖
李聪
李翔
关键词 时效网络人类交互网络模型流行病传播    
Abstract:Temporal human contact networks have their own dynamical properties, which can be depicted by defining appropriate topological and temporal characteristic. On the other hand, the inherent structural features of temporal networks affect the dynamical processes occurring on the network significantly, such as epidemic spreading. The research progress is reviewed in this paper, covering the types and representations of human interactions, temporal network structure (network topology, temporal features and time scales), temporal network models as well as the spreading dynamics on temporal network. Then we analyze the current research situation and put forward several future research directions of this field.
Key wordsTemporal network    human interaction    network model    epidemic spreading
收稿日期: 2019-05-24      出版日期: 2019-10-24
ZTFLH:  N941.4  
基金资助:国家自然科学基金(71731004,61603097); 国家杰出青年科学基金(614250190);上海市自然科学基金(16zr1446400)
通讯作者: 李聪(1986-),女,辽宁开原人,博士,副研究员,主要研究方向为复杂网络的理论及应用。   
作者简介: 李靖(1993-),男,安徽芜湖人,硕士研究生,主要研究方向为社交网络分析与建模。
引用本文:   
李靖, 李聪, 李翔. 人类时效交互网络的建模与传播研究综述[J]. 复杂系统与复杂性科学, 2019, 16(3): 1-21.
LI Jing, LI Cong, LI Xiang. A Review on Modeling and Propagation of Human Temporal Contact Networks. Complex Systems and Complexity Science, 2019, 16(3): 1-21.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.001      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/1
[1]Rumney J. The science of society: an introduction to sociology[J]. American Journal of Sociology, 1939, 45(2): 588-289.
[2]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
[3]Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[4]Liljeros F, Edling C R, Amaral L A N, et al. The web of human sexual contacts[J]. Nature, 2001, 411(6840): 907-908.
[5]Eames K T D, Keeling M J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[J]. Proc Natl Acad Sci USA, 2002, 99(20): 13330-13335.
[6]Eckmann J P, Moses E, Sergi D. Entropy of dialogues creates coherent structures in e-mail traffic[J]. Proc Natl Acad Sci USA, 2004, 101(40): 14333-14337.
[7]Barabási A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039): 207-211.
[8]Newman M E J, Barabási A L, Watts D J, The Structure and Dynamics of Networks[M]. Princeton: Princeton University Press, 2006:229-414.
[9]汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京:高等教育出版社, 2012.
[10] Holme P, Saramäki J. Temporal networks[J]. Phys Rep, 2012, 519(3): 97-125.
[11] Perra N, Gonçalves B, Pastor-Satorras R, et al. Activity driven modeling of time varying networks[J]. Sci Rep, 2012, 2: 469.
[12] Karsai M, Perra N, Vespignani A. Time varying networks and the weakness of strong ties[J]. Sci Rep, 2014, 4: 4001.
[13] Holme P. Network reachability of real-world contact sequences[J]. Phys Rev E, 2005, 71(4): 046119.
[14] Zhang Y Q, Cui J, Zhang S M, et al. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability[J]. Eur Phys J B, 2016, 89(2): 26.
[15] Pfitzner R, Scholtes I, Garas A, et al. Betweenness preference: quantifying correlations in the topological dynamics of temporal networks[J]. Phys Rev Lett, 2013, 110(19): 198701.
[16] Viswanath B, Mislove A, Cha M, et al. On the evolution of user interaction in facebook[C]//Proceedings of the 2nd ACM workshop on Online social networks. ACM, 2009: 37-42.
[17] Schneider C M, Moreira A A, Andrade J S, et al. Mitigation of malicious attacks on networks[J]. Proc Natl Acad Sci USA, 2011, 108(10): 3838-3841.
[18] Perra N, Baronchelli A, Mocanu D, et al. Random walks and search in time-varying networks[J]. Phys Rev Lett, 2012, 109(23): 238701.
[19] Jo H H, Perotti J I, Kaski K, et al. Analytically solvable model of spreading dynamics with non-Poissonian processes[J]. Phys Rev X, 2014, 4(1): 011041.
[20] Scholtes I, Wider N, Pfitzner R, et al. Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks[J]. Nat Commun, 2014, 5: 5024.
[21] Moinet A, Starnini M, Pastor-Satorras R. Burstiness and aging in social temporal networks[J]. Phys Rev Lett, 2015, 114(10): 108701.
[22] Lee S, Rocha L E C, Liljeros F, et al. Exploiting temporal network structures of human interaction to effectively immunize populations[J]. PLoS One, 2012, 7(5): e36439.
[23] Starnini M, Machens A, Cattuto C, et al. Immunization strategies for epidemic processes in time-varying contact networks[J]. J Theor Biol, 2013, 337: 89-100.
[24] Salathé M, Kazandjieva M, Lee J W, et al. A high-resolution human contact network for infectious disease transmission[J]. Proc Natl Acad Sci USA, 2010, 107(51): 22020-22025.
[25] Wang J B, Wang L, Li X. Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history[J]. IEEE Trans Cybern, 2016, 46(12): 2782-2795.
[26] Cattuto C, Van den Broeck W, Barrat A, et al. Dynamics of person-to-person interactions from distributed RFID sensor networks[J]. PLoS One, 2010, 5(7): e11596.
[27] Isella L, Stehlé J, Barrat A, et al. What′s in a crowd? analysis of face-to-face behavioral networks[J] J Theor Biol, 2011, 271(1): 166-180.
[28] Vanhems P, Barrat A, Cattuto C, et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors[J]. PLoS One, 2013, 8(9): e73970.
[29] Takaguchi T, Nakamura M, Sato N, et al. Predictability of conversation partners[J]. Phys Rev X, 2011, 1(1): 011008.
[30] Stopczynski A, Sekara V, Sapiezynski P, et al. Measuring large-scale social networks with high resolution[J]. PLoS One, 2014, 9(4): e95978.
[31] Sekara V, Stopczynski A, Lehmann S. Fundamental structures of dynamic social networks[J]. Proc Natl Acad Sci USA, 2016, 113(36): 9977-9982.
[32] Zhang Y, Wang L, Zhang Y Q, et al. Towards a temporal network analysis of interactive WiFi users[J]. Europhys Lett, 2012, 98(6): 68002.
[33] Zhang Y Q, Li X. Temporal dynamics and impact of event interactions in cyber-social populations[J]. Chaos, 2013, 23(1): 013131.
[34] Zhang Y Q, Li X. When susceptible-infectious-susceptible contagion meets time-varying networks with identical infectivity[J]. Europhys Lett, 2014, 108(2): 28006.
[35] Zhang Y Q, Li X, Xu J, et al. Human interactive patterns in temporal networks[J]. IEEE Trans Syst Man Cybern -Syst, 2014, 45(2): 214-222.
[36] Sun L, Axhausen K W, Lee D H, et al. Understanding metropolitan patterns of daily encounters[J]. Proc Natl Acad Sci USA, 2013, 110(34): 13774-13779.
[37] Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968): 1018-1021.
[38] Crandall D J, Backstrom L, Cosley D, et al. Inferring social ties from geographic coincidences[J]. Proc Natl Acad Sci USA, 2010, 107(52): 22436-22441.
[39] Rocha L E C, Liljeros F, Holme P. Information dynamics shape the sexual networks of Internet-mediated prostitution[J]. Proc Natl Acad Sci USA, 2010, 107(13): 5706-5711.
[40] Génois M, Vestergaard C L, Fournet J, et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers[J]. Network Science, 2015, 3(3): 326-347.
[41] Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media[C]//Proceedings of the SIGCHI conference on human factors in computing systems. ACM, 2010: 1361-1370.
[42] Saramäki J, Moro E. From seconds to months: an overview of multi-scale dynamics of mobile telephone calls[J]. Eur Phys J B, 2015, 88(6): 164.
[43] Holme P. Analyzing temporal networks in social media[J]. Proc IEEE, 2014, 102(12): 1922-1933.
[44] Liang D, Li X, Zhang Y Q. Identifying familiar strangers in human encounter networks[J]. Europhys Lett, 2016, 116(1): 18006.
[45] Montanari A, Saberi A. The spread of innovations in social networks[J]. Proc Natl Acad Sci USA, 2010, 107(47): 20196-20201.
[46] Rizzo A, Porfiri M. Innovation diffusion on time-varying activity driven networks[J]. Eur Phys J B, 2016, 89(1): 20.
[47] Granovetter M S. The strength of weak ties[J].Am J Social, 1977, 78(6): 347-367.
[48] Krackhardt D, Nohria N, Eccles R G. Networks and Organizations:Structure Form and Action[M]. Boston: Harrard Business School Press, 1992: 216-239.
[49] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382.
[50] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Rev Mod Phys, 2002, 74(1): 47.
[51] Tang J, Scellato S, Musolesi M, et al. Small-world behavior in time-varying graphs[J]. Phys Rev E, 2010, 81(5): 055101.
[52] Starnini M, Pastor-Satorras R. Topological properties of a time-integrated activity-driven network[J]. Phys Rev E, 2013, 87(6): 062807.
[53] Cui J, Zhang Y Q, Li X. On the clustering coefficients of temporal networks and epidemic dynamics[C]//2013 IEEE International Symposium on Circuits and Systems, IEEE, 2013: 2299-2302.
[54] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Phys Rev E, 2002, 66(6): 065102.
[55] Motter A E. Cascade control and defense in complex networks[J]. Phys Rev Lett, 2004, 93(9): 098701.
[56] Rocha L E C, Liljeros F, Holme P. Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts[J]. PLoS Comput Biol, 2011, 7(3): e1001109.
[57] Holme P, Saramki, J Temporal Networks[M]. Berlin: Springer, 2013:1-14.
[58] Kim H, Anderson R. Temporal node centrality in complex networks[J]. Phys Rev E, 2012, 85(2): 026107.
[59] Starnini M, Baronchelli A, Barrat A, et al. Random walks on temporal networks[J]. Phys Rev E, 2012, 85(5): 056115.
[60] Klimek P, Thurner S. Triadic closure dynamics drives scaling laws in social multiplex networks[J]. New J Phys, 2013, 15(6): 063008.
[61] Medus A D, Dorso C O. Memory effects induce structure in social networks with activity-driven agents[J]. J Stat Mech, 2014, 2014(9): P09009.
[62] Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J]. Phys Rev E, 2002, 66(3): 035101.
[63] Serrano M á, Boguná M. Percolation and epidemic thresholds in clustered networks[J]. Phys Rev Lett, 2006, 97(8): 088701.
[64] Karsai M, KiveläM, Pan R K, et al. Small but slow world: how network topology and burstiness slow down spreading[J]. Phys Rev E, 2011, 83(2): 025102.
[65] Morone F, Makse H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563): 65-68.
[66] Vestergaard C L, Génois M, Barrat A. How memory generates heterogeneous dynamics in temporal networks[J]. Phys Rev E, 2014, 90(4): 042805.
[67] Karsai M, Kaski K, Kertész J. Correlated dynamics in egocentric communication networks[J]. PLoS One, 2012, 7(7): e40612.
[68] Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]. Proc Natl Acad Sci USA, 2010, 107(10): 4511-4515.
[69] Zhao K, Stehlé J, Bianconi G, et al. Social network dynamics of face-to-face interactions[J]. Phys Rev E, 2011, 83(5): 056109.
[70] 周涛,韩筱璞,闫小勇,等.人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4): 481-540.
Zhou Tao, Han Xiaopu, Yan Xiaoyong, et al. Statistical mechanics on temporal and spatial activities of human[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540.
[71] Karagiannis T, Le Boudec J Y, Vojnovic M. Power law and exponential decay of intercontact times between mobile devices[J]. IEEE Trans Mob Comput, 2010, 9(10): 1377-1390.
[72] Doerr C, Blenn N, Van Mieghem P. Lognormal infection times of online information spread[J]. PLoS One, 2013, 8(5): e64349.
[73] Goh K I, Barabási A L. Burstiness and memory in complex systems[J]. Europhys Lett, 2008, 81(4): 48002.
[74] Karimi F, Ramenzoni V C, Holme P. Structural differences between open and direct communication in an online community[J]. Physica A, 2014, 414: 263-273.
[75] Kim H, Ha M, Jeong H. Scaling properties in time-varying networks with memory[J]. Eur Phys J B, 2015, 88(12): 315.
[76] Colman E R, Greetham D V. Memory and burstiness in dynamic networks[J]. Phys Rev E, 2015, 92(1): 012817.
[77] Jo H H, Karsai M, Kertész J, et al. Circadian pattern and burstiness in mobile phone communication[J]. New J Phys, 2012, 14(1): 013055.
[78] Fournet J, Barrat A. Contact patterns among high school students[J]. PLoS One, 2014, 9(9): e107878.
[79] Yasseri T, Sumi R, Kertész J. Circadian patterns of wikipedia editorial activity: a demographic analysis[J]. PLoS One, 2012, 7(1): e30091.
[80] Holme P. Modern temporal network theory: a colloquium[J]. Eur Phys J B, 2015, 88(9): 234.
[81] Gleeson J P, O’Sullivan K P, Baos R A, et al. Effects of network structure, competition and memory time on social spreading phenomena[J]. Phys Rev X, 2016, 6(2): 021019.
[82] Clauset A, Eagle N. Persistence and periodicity in a dynamic proximity network[DB/OL]. [2019-04-30]. https://arxiv.org/abs/1211.7343.
[83] Cardillo A, Petri G, Nicosia V, et al. Evolutionary dynamics of time-resolved social interactions[J]. Phys Rev E, 2014, 90(5): 052825.
[84] Backlund V P, Saramäki J, Pan R K. Effects of temporal correlations on cascades: threshold models on temporal networks[J]. Phys Rev E, 2014, 89(6): 062815.
[85] Pan R K, Saramäki J. Path lengths, correlations, and centrality in temporal networks[J]. Phys Rev E, 2011, 84(1): 016105.
[86] Bajardi P, Barrat A, Natale F, et al. Dynamical patterns of cattle trade movements[J]. PLoS One, 2011, 6(5):e19869.
[87] Gönlund A, Holme P. Networking the seceder model: Group formation in social and economic systems[J]. Phys Rev E, 2004, 70(3): 036108.
[88] Erds P, Rényi A. On the evolution of random graphs[J]. Publ Math Inst Hungar Acad Sci, 1960, 5: 17-61.
[89] Holme P. Epidemiologically optimal static networks from temporal network data[J]. PLoS Comput Biol, 2013, 9(7): e1003142.
[90] Newman M. Networks: an Introduction[M]. New York: Oxford University Press, 2010: 424-434.
[91] Rocha L E C, Blondel V D. Bursts of vertex activation and epidemics in evolving networks[J]. PLoS Comput Biol, 2013, 9(3): e1002974.
[92] Liu S Y, Baronchelli A, Perra N. Contagion dynamics in time-varying metapopulation networks[J]. Phys Rev E, 2013, 87(3): 032805.
[93] Liu S, Perra N, Karsai M, et al. Controlling contagion processes in activity driven networks[J]. Phys Rev Lett, 2014, 112(11): 118702.
[94] Starnini M, Pastor-Satorras R. Temporal percolation in activity-driven networks[J]. Phys Rev E, 2014, 89(3): 032807.
[95] Sun K, Baronchelli A, Perra N. Contrasting effects of strong ties on sir and sis processes in temporal networks[J]. Eur Phys J B, 2015, 88(12): 326.
[96] Hoppe K, Rodgers G J. Mutual selection in time-varying networks[J]. Phys Rev E, 2013, 88(4): 042804.
[97] Pozzana I, Sun K, Perra N. Epidemic spreading on activity-driven networks with attractiveness[J]. Phys Rev E, 2017, 96(4): 042310.
[98] Laurent G, Saramäki J, Karsai M. From calls to communities: a model for time-varying social networks[J]. Eur Phys J B, 2015, 88(11): 301.
[99] Kossinets G, Watts D J. Empirical analysis of an evolving social network[J]. Science, 2006, 311(5757): 88-90.
[100] Sunny A, Kotnis B, Kuri J. Dynamics of history-dependent epidemics in temporal networks[J]. Phys Rev E, 2015, 92(2): 022811.
[101] Starnini M, Baronchelli A, Pastor-Satorras R. Modeling human dynamics of face-to-face interaction networks[J]. Phys Rev Lett, 2013, 110(16): 168701.
[102] Zhang Y Q, Li X, Liang D, et al. Characterizing bursts of aggregate pairs with individual poissonian activity and preferential mobility[J]. IEEE Commun Lett, 2015, 19(7): 1225-1228.
[103] Li J, Li C, Li X. Quantifying the contact memory in temporal human interactions[C]//2018 IEEE International Symposium on Circuits and Systems, IEEE, 2018: 1-5.
[104] Valdano E, Poletto C, Giovannini A, et al. Predicting epidemic risk from past temporal contact data[J]. PLoS Comput Biol, 2015, 11(3): e1004152.
[105] Ubaldi E, Perra N, Karsai M, et al. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation[J]. Sci Rep, 2016, 6: 35724.
[106] Ubaldi E, Vezzani A, Karsai M, et al. Burstiness and tie activation strategies in time-varying social networks[J]. Sci Rep, 2017, 7: 46225.
[107] Li C, Li J, Li X. Evolving nature of human contact networks with its impact on epidemic processes[DB/OL]. [2019-04-30]. https://arXivorg/abs/1905.08525?context=physics.soc-ph.
[108] Qu B, Li C, Van Mieghem P, et al. Ranking of nodal infection probability in susceptible-infected-susceptible epidemic[J]. Sci Rep, 2017, 7(1): 9233.
[109] Iribarren J L, Moro E. Impact of human activity patterns on the dynamics of information diffusion[J]. Phys Rev Lett, 2009, 103(3): 038702.
[110] Wang D, Wen Z, Tong H, et al. Information spreading in context[C]//Proceedings of the 20th international conference on World wide web. ACM, 2011: 735-744.
[111] Pastor-Satorras R, Castellano C, Van Mieghem P, et al. Epidemic processes in complex networks[J]. Rev Mod Phys, 2015, 87(3): 925.
[112] Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 1927, 115(772): 700-721.
[113] Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press, 1992:13-23.
[114] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals[M]. Princeton: Princeton University Press, 2007:279-334.
[115] Miritello G, Moro E, Lara R. Dynamical strength of social ties in information spreading[J]. Phys Rev E, 2011, 83(4): 045102.
[116] KiveläM, Pan R K, Kaski K, et al. Multiscale analysis of spreading in a large communication network[J]. J Stat Mech, 2012,(3): 03005.
[117] Gao L, Wang W, Shu P, et al. Promoting information spreading by using contact memory[J]. Europhys Lett, 2017, 118(1): 18001.
[118] Tang J, Mascolo C, Musolesi M, et al. Exploiting temporal complex network metrics in mobile malware containment[C]//2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, IEEE, 2011: 1-9.
[119] Wang H, Chen C, Qu B, et al. Epidemic mitigation via awareness propagation in communication networks: the role of time scales[J]. New J Phys, 2017, 19(7): 073039.
[120] Fournet J, Barrat A. Estimating the epidemic risk using non-uniformly sampled contact data[J]. Sci Rep, 2017, 7(1): 9975.
[121] Génois M, Vestergaard C L, Cattuto C, et al. Compensating for population sampling in simulations of epidemic spread on temporal contact networks[J].Nat Commun, 2015, 6: 8860.
[1] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed