Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 40-47    DOI: 10.13306/j.1672-3813.2019.03.004
  本期目录 | 过刊浏览 | 高级检索 |
参照零模型的实证网络传播影响因素分析
周建云, 刘真真, 许小可
大连民族大学信息与通信工程学院,辽宁 大连 116600
Effect Factor Analysis of Information Spreading in Empirical Networks Based on Null Models
ZHOU Jianyun, LIU Zhenzhen, XU Xiaoke
College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
全文: PDF(2159 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 实证网络中结构特征通常对传播速度具有非常重要的影响,为了探究何种结构特征对传播速度起着至关重要的影响,以一个真实的短信社交网络为例,在原始实证网络和其对应的不同零模型网络上分别进行传播仿真实验。仿真结果表明网络的平均最短路径长度是影响传播速度的关键性因素,网络度分布是影响传播范围的关键性因素。系统性地提出了一种参照零模型理论检验和量化实证网络传播影响因素的方法,该方法可扩展到同步、博弈、级联故障等其它网络动力学研究中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周建云
刘真真
许小可
关键词 疾病传播匹配特性社团结构零模型    
Abstract:The structural characteristics of real networks usually have a very important impact on spread speed. In order to explore which structural features have a crucial impact on the speed of spreading, we collect the data of a SMS social network, and perform simulation experiments on the original network and its corresponding null-model networks. Simulation results show that the average shortest path length of the network is the key factor affecting the propagation speed, and the network distribution is the key factor affecting the propagation range. This study systematically proposes a method to test and quantify the influencing factors of real-life network spreading by referring to null model theory, which can also be extended to other researches of network dynamics, such as synchronization, game, cascading failures.
Key wordsepidemic spread    assortativity    community structure    null model
收稿日期: 2019-03-06      出版日期: 2019-10-24
ZTFLH:  TB3  
基金资助:国家自然科学基金(61773091, 61603073);辽宁省重点研发计划指导计划项目(2018104016);辽宁省高等学校创新人才支持计划(LR2016070);大连市青年科技之星项目支持计划(2015R091)
通讯作者: 许小可(1979-),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 周建云(1997-),男,内蒙古乌海人,硕士研究生,主要研究方向为社交网络上信息传播。
引用本文:   
周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
ZHOU Jianyun, LIU Zhenzhen, XU Xiaoke. Effect Factor Analysis of Information Spreading in Empirical Networks Based on Null Models. Complex Systems and Complexity Science, 2019, 16(3): 40-47.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.004      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/40
[1]Watts D J, Strogatz S H. Collective dynamics of small world networks[J]. Nature, 1998, 393(6684):440-442.
[2]Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200-3212.
[3]Eguíluz, Víctor M, Klemm K. Epidemic threshold in structured scale-free networks[J]. Physical Review Letters, 2002, 89(10):108701.
[4]周冬梅, 陈婷, 赵闻文. 众筹平台的双层网络信息传播模型研究[J]. 电子科技大学学报, 2018, 47(1): 132-138.
Zhou Dongmei, Chen Ting, Zhao Wenwen. Research on information spreading model on coupled networks of crowdfunding platform[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(1): 132-138.
[5]Liu Z, Hu B. Epidemic spreading in community networks[J]. Europhysics Letters, 2005, 72(2):315-321.
[6]Huang W, Li C. Epidemic spreading in scale-free networks with community structure[J]. Journal of Statistical Mechanics: Theory and Experiment, 2007, 2007(1):P01014.
[7]Zhou Y Z, Liu Z H, Zhou J. Periodic wave of epidemic spreading in community networks[J]. 中国物理快报:英文版, 2007, 24(2):581-584.
[8]王宁宁. 网络结构异质性对疾病传播影响的初步研究[J]. 重庆理工大学学报(自然科学版), 2017,31(4):121-126.
Wang Ningning. Primary study about the effect of network structure heterogeneity on epidemic spread[J]. Journal of Chongqing University of Technology (Natural Science), 2017,31(4):121-126.
[9]Wu X, Liu Z. How community structure influences epidemic spread in social networks[J]. Physica A Statistical Mechanics & Its Applications, 2008, 387(2):623-630.
[10] 许小可. 社交网络上的计算传播学[M]. 北京:高等教育出版社, 2015.
[11] Barthélemy M, Barrat A, Pastorsatorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks.[J]. Physical Review Letters, 2004, 92(17):178701.
[12] Zanette D H, Kuperman M. Centro Atómico Bariloche, et al. Effects of immunization in small-world epidemics[J]. Physica A Statistical Mechanics & Its Applications, 2002, 309(3):445-452.
[13] Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2001, 26(4):521-529.
[14] Gjoka M, Kurant M, Markopoulou A. 2.5K-Graphs: From Sampling to Generation[M]//IEEE Infocom. New York: IEEE, 2013:1968-1976.
[15] Orsini C, Dankulov M M, Colomer-de-Simón, et al. Quantifying randomness in real networks[J]. Nature Communications, 2015, 6:8627.
[16] Mahadevan P, Krioukov D V, Fall K R, et al. Systematic topology analysis and generation using degree correlations[J]. Acm Special Interest Group on Data Communication, 2006, 36(4): 135-146.
[17] 尚可可, 许小可. 基于置乱算法的复杂网络零模型构造及其应用[J]. 电子科技大学学报, 2014, 43(1):7-20.
Shang Keke, Xu Xiaoke. Construction and application for null nodels of complex networks based on randomized algorithms[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1):7-20.
[18] Wu Y, Zhou C, Xiao J, et al. Evidence for a bimodal distribution in human communication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18803-18808.
[19] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京:高等教育出版社, 2012.
[20] 左焘. 基于网络结构的病毒传播分析[D]. 南京:南京邮电大学, 2015.
Zuo Tao. Research on epidemic spreading based on network structure[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015.
[1] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[2] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed