Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 55-61    DOI: 10.13306/j.1672-3813.2020.01.007
  本期目录 | 过刊浏览 | 高级检索 |
三渠道回收模式下闭环供应链混沌控制研究
董海a, 徐德珉b
沈阳大学 a.应用技术学院;b.机械工程学院,沈阳 110044
Research on Chaos and Control of Closed-Loop Supply Chain under Three Channel Recovery Modes
DONG Haia, XU Deminb
a.School of Applied Technology; b.School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
全文: PDF(2147 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对制造商、回收商及消费者组成的三级闭环供应链模型,运用混沌控制理论解决三渠道回收模式下闭环供应链混沌控制问题。首先考虑消费者对再制品需求的不确定性,在某一时间段中,对消费者自愿购买再制品数量的数据进行采集,通过K-S检验的方法验证该数据服从均匀分布,进一步构建基于决策变量的离散动态模型;其次使用MATLAB软件进行数值仿真模拟,研究回收价格敏感系数和回收价格竞争系数作为固定值时,制造商和两个回收商之间的绘制分岔图、最大Lyapunov指数图、初值敏感分析图,并对系统的混沌特征和初值敏感性进行研究分析;最后采用状态反馈控制和参数调整的方法对混沌系统进行控制。结果表明该方法能有效地改善或消除混沌状态,优化决策行为,提高决策者利润。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董海
徐德珉
关键词 闭环供应链K-S检验分岔图最大Lyapunov指数图敏感性分析混沌控制    
Abstract:Aiming at the three-level closed-loop supply chain system composed of manufacturers, recyclers and consumers, chaos control theory is used to solve the chaotic control problem of closed-loop supply chains under three channel recovery modes. Firstly, the uncertainty of consumer's demand for remanufactured products is considered, over a period of time, data on the number of consumer resourcepurchases of remanufactured products are collected. The method of K-S test proves that the data obeys the uniform distribution, and further constructs the discrete dynamic model based on the decision variable. Secondly, using MATLAB software to simulate numerical simulation, study the recovery price sensitivity coefficient and the recovery price competition coefficient as fixed values, the manufacturer and the two recyclers draw a fork map, the largest Lyapunov index map, the initial value sensitive analysis map, and the system's chaotic characteristics and primary value sensitivity analysis. Finally, the chaotic system is controlled by means of state feedback control and parameter adjustment. The results show that this method can effectively improve or eliminate chaotic state, optimize decision-making behavior and improve the profit of decision makers.
Key wordsclosed-loop supply chain    K-S test    bifurcation diagram    Maximum Lyapunov index diagram    sensitivity analysis    chaotic control
收稿日期: 2019-10-22      出版日期: 2020-04-29
ZTFLH:  O415.5  
基金资助:国家自然科学基金(71672117);辽宁省自然科学基金(201602514)
通讯作者: 徐德珉(1994-),男,辽宁沈阳人,硕士研究生,主要研究方向为供应链管理。   
作者简介: 董海(1971-),男,辽宁沈阳人,教授,博士,主要研究方向为网络化制造,工业工程。
引用本文:   
董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
DONG Hai, XU Demin. Research on Chaos and Control of Closed-Loop Supply Chain under Three Channel Recovery Modes. Complex Systems and Complexity Science, 2020, 17(1): 55-61.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.007      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/55
[1]Maiti T, Giri B C. A closed loop supply chainunder retail price and productquality dependent demand[J]. Journal of Manufacturing Systems, 2015, 37(9):624-637.
[2]Jun M Z, Zhang N, Dai Y. Managing channel profits of different cooperative models in closed loop supply chains[J]. Omega, 2016, 59(6):251-262.
[3]王晶,王寻.受约束供应链模型的复杂动力学行为[J]. 系统工程理论与实践,2012, 32(4): 746-751.
Wang jing, Wang xun. Complex dynamic behavior of constrained supply chain model[J]. System Engineering-Theory & Practice, 2012, 32(4): 746-751.
[4]Zhang J L, Ma J H. Research on the price game model for four oligarchs with different decision rules and its chaos control[J]. Nonlinear Dynamics, 2012, 70(1): 323-334.
[5]陈彬,马军海.新旧产品具有价差的CLSC复杂性分析与混沌控制[J]. 复杂系统与复杂性科学,2014, 11(3): 40-49.
Chen bin, Ma jinhai. Complex analysis and chaos control of a Closed-Loop Supply Chain based on new and old products price difference[J]. Complex Systems and Complexity Science, 2014, 11(3): 40-49.
[6]Ma J H, Xie L. The comparison and complex analysis on dual channel supply chain under different channel power structures and uncertain demand[J]. Nonlinear Dynamics, 2016, 83(3): 1379-1393.
[7]高飞,曹文静.三维供应链分数阶差分博弈模型的动力学分析[J]. 计算机工程与应用, 2018, 54(2): 246-252.
Gao fei, Cao wenjing. Dynamic analysis of the three-dimensional supply chain score order differential game model[J]. Computer Engineering and Applications, 2018, 54(2): 246-252.
[8]Goksu A, Kocamaz U E, Uyaroglu Y. Synchronization and control of chaos in supply chain management[J]. Computer& Industrial Engineering, 2015, 86(9): 107-115.
[9]Chang J W, Zhao L W. Complexity analysis of dynamic cooperative game models for supply chain with the remanufactured products[J]. Discrete Dynamics in Nature and Society, 2018(7): 1-10.
[10] Dai D M, Si F S, Wang J. Stability and complexity analysis of a dual channel closed loop supply chain with delayed decision under government intervention[J]. Entropy, 2017,19(11): 1-21.
[11] Ma J H, Yu M, Ren H. Research on the complexity and chaos control about a closed loop supply chain with dual channel recycling and uncertain consumer perception[J]. Complexity, 2018, (1): 1-13.
[12] Ma J, Wang H. Complexity analyzing of dynamic noncooperative game models for closed-loop supply chain with product recovery[J]. Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, 2014, 38(23): 5562-5572.
[13] Vlachos D, Georgiadis P, Iakovou E. A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains[J]. Computers and Operations Research, 2007, 34(2): 367-394.
[14] Lu J C, Tsao Y C, Dong M. Dynamic decision-marking in a two-stage supply chain with repeated transactions[J]. International Journal of Production Economics, 2012, 137(2): 211-225.
[15] Huang M, Song M, Lee L H. Analysis for strategy of closed loop supply chain with dual recycling channel[J]. International Journal of Production Economics, 2013, 144(2): 510-520.
[1] 施浩楠, 崔昊, 闵富红, 汤丹慧, 管浩浩. 基于Python的彩色图像忆阻系统多稳态加密[J]. 复杂系统与复杂性科学, 2018, 15(3): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed