Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (1): 30-37    DOI: 10.13306/j.1672-3813.2021.01.005
  本期目录 | 过刊浏览 | 高级检索 |
激光复混沌系统构建及其点乘函数投影同步
方洁1,2, 姜明浩1, 安小宇1, 邓玮1,2
1.郑州轻工业大学电气信息工程学院,郑州 450002;
2.河南省信息化电器重点实验室,郑州 450002
A Novel Laser Complex Chaotic System and Its Point Multiplication Function Projection Synchronization
FANG Jie1,2, JIANG Minghao1, AN Xiaoyu1, DENG Wei1,2
1. College of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
2. Henan Key Lab of Information-based Electrical Appliances, Zhengzhou 450002, China
全文: PDF(1877 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种新的激光复混沌系统及其点乘函数投影同步方法。首先,以四维激光实超混沌系统模型为基础,构建了一个新的激光复混沌系统,基于常规动力学分析方法和MATLAB仿真软件研究了系统的耗散性、平衡点、Lyapunov指数谱、相图、分叉图等基本动力学特性。研究结果表明,该系统动力学行为丰富,在一定参数下具有蝴蝶结型混沌、超混沌吸引子,非常适用于混沌加密领域。进一步,以向量点积运算为基础,定义了一种新的点乘函数投影同步方式,基于滑模控制方法实现了蝴蝶结型激光复混沌系统的点乘函数投影同步。数值仿真验证了理论分析的正确性和有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方洁
姜明浩
安小宇
邓玮
关键词 激光复混沌系统蝴蝶结型混沌吸引子点乘函数投影同步滑模控制    
Abstract:This paper proposes a new laser complex chaotic system and a new point multiplication function projection synchronization method. Firstly, a new laser complex chaotic system is constructed on the basis of the 4D laser real chaotic system. Based on the conventional dynamic analysis method and MATLAB simulation software, the basic dynamic characteristics of the system such as dissipation, equilibrium point, Lyapunov exponent spectrum, phase diagram and bifurcation diagram are studied. The results show that the new chaotic system is rich in dynamics and has bow-tie chaotic and hyperchaotic attractors under certain parameters. Secondly, according to the vector dot product operation, a new point multiplication function projection synchronization method is defined. Based on the sliding mode control method, the bow-tie laser complex chaotic system can realize point multiplication function projection synchronization according to the function scaling factor. Numerical simulations verify the correctness and validity of the theoretical analysis.
Key wordslaser complex chaotic system    bow-tie chaotic attractor    point multiplication function projection synchronization    sliding mode control
收稿日期: 2020-04-15      出版日期: 2020-12-28
ZTFLH:  O415.5  
  TP273  
基金资助:国家自然科学基金(61775198);河南省科技攻关项目(202102210317,192102210083);河南省高等学校重点科研项目(20A413012)
作者简介: 方洁(1981),女,河南南阳人,博士,教授,主要研究方向为非线性控制,复杂网络控制。
引用本文:   
方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
FANG Jie, JIANG Minghao, AN Xiaoyu, DENG Wei. A Novel Laser Complex Chaotic System and Its Point Multiplication Function Projection Synchronization. Complex Systems and Complexity Science, 2021, 18(1): 30-37.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.01.005      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I1/30
[1] Pecora L M, Carrol T L. Synchronization in chaotic system[J]. Physical Review Letter, 1990,64(8): 821824.
[2] Sun J W, Zhao X T, Fang J, et al. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization[J]. Nonlinear Dynamics, 2018, 94(4): 28792887.
[3] 方洁,朱飞,娄新杰,等. 受扰混沌系统双重组合函数投影同步[J]. 华中师范大学学报(自然科学版), 2019,53(4): 509515.
Fang Jie, Zhu Fei, Lou Xinjie, et al. Dual combination function projective synchronization of chaotic systems with disturbances[J]. Journal of Central China Normal University(Natural Sciences), 2019,53(4): 509515.
[4] Ma X J, Mou J, Liu J, et al. A novel simple chaotic circuit based on memristor-memcapacitor[J]. Nonlinear Dynamics, 2020,100(3): 28592876.
[5] 高秉建. 基于Liu混沌系统生成的多翅膀蝴蝶吸引子[J]. 复杂系统与复杂性科学,2016,13(1): 9194.
Gao Bingjian. Multi-wing butterfly attractor from a modified chaotic system[J]. Complex Systems and Complexity Science, 2016,13(1): 9194.
[6] Yuan G H, Zhang X, Wang Z R. Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking[J]. Optik, 2014,125(8): 19501953.
[7] 潘明,孟义朝,陈振炜. 双延时反馈光电振荡系统产生混沌激光的动力学特性[J]. 中国激光,2018,45(6): 171177.
Pan Ming, Meng Yichao, Chen Zhenwei. Dynamic characteristics of optoelectronic oscillation system with double delay feedback for generating laser chaos[J]. Chinese Journal of Lasers, 2018,45(6): 171177.
[8] 李锟影,李璞,郭晓敏,等. 利用光反馈多模激光器结合滤波器产生平坦混沌[J]. 物理学报, 2019,68(11): 4248.
Li Kunying, Li Pu, Guo Xiaomin, et al. Flat chaos generated by optical feedback multi-mode laser with filter[J]. Acta Physica Sinica, 2019,68(11):4248.
[9] Mahmoud E E, AL-Harthi B H. A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag[J]. Chaos, Solitons & Fractals, 2020,130: 109442.
[10] 颜森林.激光混沌并行串联同步及其在中继器保密通信系统中的应用[J]. 物理学报, 2019,68(17): 170502.
Yan Senlin. Chaotic laser parallel series synchronization and its repeater applications in secure communication[J]. Acta Physica Sinica, 2019,68(17): 170502.
[11] 胡汉平,陈笑风,苏威,等. 基于光电反馈延迟的多点耦合混沌同步和通信[J]. 光学学报, 2014, 34(4): 8997.
Hu Hanping, Chen Xiaofeng, Su Wei, et al. Multi-coupled chaos synchronization and communication based on optoelectronic feedback delay[J]. Acta Optica Sinica, 2014,34(4): 8997.
[12] Yang F F, Mou J, Ma C G, et al. Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application[J]. Optics and Lasers in Engineering, 2020,129: 106031.
[13] 党红刚, 刘晓君. 一个混沌复系统的同步与混沌控制[J]. 四川大学学报(自然科学版), 2013,50(5): 10501053.
Dang Honggang, Liu Xiaojun. Synchronization and chaos control of a chaotic complex system[J]. Journal of Sichuan University(Natural Science Edition), 2013,50(5): 10501053.
[14] 王诗兵, 王兴元. 超混沌复系统的自适应广义组合复同步及参数辨识[J]. 电子与信息学报, 2016,38(8): 20622067.
Wang Shibing, Wang Xingyuan. Adaptive generalized combination complex synchronization and parameter identification of hyperchaotic complex systems[J]. Journal of Electronics & Information Technology, 2016,38(8): 20622067.
[15] 张芳芳, 刘树堂, 余卫勇. 时滞复Lorenz 混沌系统特性及其自时滞同步[J]. 物理学报, 2013,62(22): 220505.
Zhang Fangfang, Liu Shutang, Yu Weiyong. Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay[J]. Acta Physica Sinica, 2013,62(22): 220505.
[16] Liu J, Liu S T. Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters[J]. Applied Mathematical Modelling, 2017,48: 440450.
[17] Nian F Z, Liu X M, Zhang Y Q. Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances[J]. Chaos, Solitons & Fractals, 2018, 116: 2228.
[18] Yadav V K, Kumar R, Leung A Y T, et al. Dual phase and dual anti-phase synchronization of fractional order chaotic systems in real and complex variables with uncertainties[J]. Chinese Journal of Physics, 2019,57: 282308.
[19] Liu H J, Zhang Z Q, Kadir A, et al. Image encryption using complex hyper chaotic system by injecting impulse into parameters[J]. Applied Mathematics and Computation, 2019,360: 8393.
[20] Sun J W, Fang J, Wang Y F, et al. Function combination synchronization of three chaotic complex systems[J]. Optik, 2016,127(20): 95049516.
[21] 同济大学数学系. 线性代数[M]. 5版. 北京: 高等教育出版社, 2007:111112.
[1] 朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed