Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 1-8    DOI: 10.13306/j.1672-3813.2021.03.001
  本期目录 | 过刊浏览 | 高级检索 |
三层无标度关联网络协同传播模型阈值研究
徐云程1, 胡华1, 孙小军2
1.宁夏大学数学统计学院,银川 750021;
2.宝鸡文理学院数学与信息科学学院,陕西 宝鸡 721013
Research on Threshold of Cooperative Propagation Model of Three-layer Scale-free Associated Network
XU Yuncheng1, HU Hua1, SUN Xiaojun2
1. School of Mathematics and statistics, Ning Xia University, Ningxia 756400, China;
2. School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
全文: PDF(1320 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 媒介传染病在中国传染病中占比较高,构成严重的公共卫生风险。因此有关媒介传染病模型的动力学行为研究受到了国内外学者的广泛关注。针对这类传染病,首先基于异质平均场理论建立了三层无标度关联网络协同传播模型;其次基于所建模型,针对各子系统恢复率均相等、至少有两个不相等两种情况,利用柯西交错定理和扰动理论分析了全局传播阈值和各孤立子网阈值的相对大小,并得到结论:协同传播减小了传播阈值,促进了疾病的传播。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐云程
胡华
孙小军
关键词 关联网络协同传播无标度网络阈值媒介传染病    
Abstract:Vector-borne diseases account for a high proportion of the infectious diseases in China, which constitutes a serious public health risk. Thus the research on dynamic behavior of vector-borne disease model has been widely concerned by a number of scholars. Aiming at a kind of vector-borne transmission disease. Firstly, a collaborative communication model of three-layer scale-free associated networks is established based on the heterogeneous mean field theory. Secondly, based on the established model, the relative values of global propagation threshold and each isolated subnetworks threshold are analyzed by Cauchy’s interleaving theorem and perturbation theory under the condition that the recovery rates of each subsystem are equal or at least two are unequal. It was found that collaborative communication reduced the transmission threshold and promoted the spread of the disease.
Key wordsassociated network    collaborative communication    scale-free network    threshold    vector-borne diseases
收稿日期: 2020-11-12      出版日期: 2021-06-18
ZTFLH:  O29  
基金资助:国家自然科学基金(11361044);宁夏自然科学基金(2019AC03038)
作者简介: 徐云程(1996-),女,陕西省铜川人,硕士研究生,主要研究方向为复杂网络,网络传播动力学模型及相关应用。
引用本文:   
徐云程, 胡华, 孙小军. 三层无标度关联网络协同传播模型阈值研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 1-8.
XU Yuncheng, HU Hua, SUN Xiaojun. Research on Threshold of Cooperative Propagation Model of Three-layer Scale-free Associated Network. Complex Systems and Complexity Science, 2021, 18(3): 1-8.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.001      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/1
[1] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature, 1998, 393(6684):440-442.
[2] Barabá Si A. Emergence of scaling in random networks [J]. Science, 1999, 286(5439):509-512.
[3] 汪小帆. 无标度网络研究纷争:回顾与评述[J]. 电子科技大学学报,2020,49(4):499-510.
Wang Xiaofan. Disputes over scale-free networks: a review and review [J]. Journal of the University of Electronic Science and Technology,2020,49(4):499-510.
[4] Liu X Y, He D B, Yang L F, et al. A novel negative feedback information dissemination model based on online social network[J]. Physical A: Statistical Mechanics and Its Applications, 2019,513(9):371-389.
[5] Zhu G H, Chen G R, Zhang H F, et al. Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations[J]. Communications in Nonlinear Ence & Numerical Simulation, 2015, 20(1):240-249.
[6] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200-3203.
[7] Zhou T, Liu J G, Bai W J, et al. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2006,74(5): 1-6.
[8] Gomez-Gardenes J, Latora V, Moreno Y, et al. Spreading of sexually transmitted diseases in heterosexual populations[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(5):1399-1404.
[9] Bisanzio D, Bertolotti L, Tomassone L, et al. Modeling the spread of vector-borne diseases on bipartite network[J]. PLoS ONE, 2010,5(11): 1- 6.
[10] Wei X, Chen S H, Wu X Q, et al. A unified framework of interplay between two spreading processes in multiplex networks[J]. EPL, 2016, 114(2):1-6.
[11] 王玲娜,王领弟,傅新楚. 三部图网络上的媒介传染病动力学[J].复杂系统与复杂性科学,2017,14(2):11-18.
Wang Lingna, Wang Lingdi, Fu Xinchu. Dynamics of vector borne infectious diseases on tripartite graph networks[J]. Complex Systems and Complexity Science,2017,14(2):11-18.
[12] Li K Z, Zhang H F, Zhu G H, et al. Suboptimal control and targeted constant control for semi-random epidemic networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 99:1-9.
[13] 姜志宽,贾德胜,韩招久. 鼠疫的流行特点与防控对策[J].中华卫生杀虫药械,2020,26(1):8-15.
Jiang Zhikuan, Jia Desheng, Han Zhaojiu. Epidemic characteristics and control strategies of plague[J]. Chinese Sanitary Insecticide,2020,26(1):8-15.
[14] Gomez S, Arenas A, Borge-Holthoefer J, et al. Discrete-time markov chain approach to contact-based disease spreading in complex networks[J]. Europhys Lett, 2010,89(3):1-6.
[15] Hwang S G. Cauchy′s interlace theorem for eigenvalues of hermitian matrices[J]. American Mathematical Monthly, 2004, 111(2):157-159.
[16] Wei X, Wu X Q, Chen S H. Cooperative epidemic on a two-layered interconnected network[J]. Siam Journal on Applied Dynamical Systems, 2018,17(2):1503-1520.
[1] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[2] 景文腾, 耿金花, 韩博, 段法兵. 多阈值随机汇池网络自适应估计性能研究[J]. 复杂系统与复杂性科学, 2019, 16(3): 87-92.
[3] 陈楠, 王友国, 翟其清. 多阈值系统中的阈上随机共振研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 71-76.
[4] 李恒, 王友国, 翟其清. 阈值阵列系统中TCM编译码的随机共振现象[J]. 复杂系统与复杂性科学, 2018, 15(1): 68-74.
[5] 郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
[6] 封学军, 张铖, 蒋柳鹏, 张艳, 蒋鹤. “海上丝绸之路”集装箱航运网络路由策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 58-65.
[7] 李云, 宋运忠. 基于混合模式的BA无标度网络同步研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed