Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 28-34    DOI: 10.13306/j.1672-3813.2021.03.005
  本期目录 | 过刊浏览 | 高级检索 |
基于Backstepping的三轮机器人编队控制
于美妍, 杨洪勇, 孙玉娇
鲁东大学信息与电气工程学院,山东 烟台 264025
Formation Control of Three Wheeled Robots Based on Backstepping
YU Meiyan, YANG Hongyong, SUN Yujiao
School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
全文: PDF(1607 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对具有非完整特性的三轮机器人的路径轨迹跟踪控制问题,使用Backstepping方法,提出一种多机器人协同编队控制策略。首先将基于领航—跟随模式的系统编队问题转变成跟随机器人对各自虚拟领航者的运动轨迹追踪问题,进而得到系统位姿误差运动学方程;然后运用Backstepping方法构建非线性系统的机器人协同编队控制策略,应用Lyapunov函数等知识对机器人动力学系统分析得出,多机器人系统运行稳定,可以实现编队控制。最后通过仿真实验验证了编队方法的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于美妍
杨洪勇
孙玉娇
关键词 三轮机器人Backstepping虚拟领航者编队控制非线性系统    
Abstract:To solve the problem of path tracking control for three wheeled robots with nonholonomic dynamics characteristics, a multi robot cooperative formation control strategy is proposed by using Backstepping method. Firstly, the formation problem of multi robot system which based on pilot following mode is transformed into the problem of tracking the virtual leader's trajectory by following robot, and then the differential equation of pose error of multi robot system kinematics is obtained; then, the Backstepping method is used to construct the robot cooperative formation control strategy of nonlinear system. Lyapunov function and other knowledge are applied to analyze the robot dynamic system. It is concluded that the multi robot system is stable and can realize formation control. Finally, we verify the availability of the formation method through simulation experiments.
Key wordsthree wheeled robots    Backstepping    virtual navigator    formation control    nonlinear system
收稿日期: 2020-11-13      出版日期: 2021-06-18
ZTFLH:  TP  
基金资助:国家自然科学基金((61673200, 61903172);山东省科学基金(ZR2018ZC0438);烟台市重点研发项目(2019XDHZ085)
通讯作者: 杨洪勇(1967-),男,山东烟台人,博士,教授,主要研究方向为多智能体编队控制。   
作者简介: 于美妍(1996-),女,山东烟台人,硕士研究生,主要研究方向为多智能体编队控制。
引用本文:   
于美妍, 杨洪勇, 孙玉娇. 基于Backstepping的三轮机器人编队控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 28-34.
YU Meiyan, YANG Hongyong, SUN Yujiao. Formation Control of Three Wheeled Robots Based on Backstepping. Complex Systems and Complexity Science, 2021, 18(3): 28-34.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.005      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/28
[1] Yu J G. Average case constant factor time and distance optimal multi-robot path planning in well-connected environments [J]. Autonomous Robots, 2020, 44(5):469-483.
[2] Burgard W, Moors M, Stachniss C, et al. Coordinated multi-robot exploration [J]. IEEE Transactions on Robotics, 2005, 21(3):376-386.
[3] Howard A. Multi-robot simultaneous localization and mapping using particle filters [J]. International Journal of Robotics Research, 2006, 25(12):1243-1256.
[4] Vig L, Adams J A. Multi-robot coalition formation[J]. IEEE Transactions on Robotics, 2006, 22(4):637-649.
[5] Fazli P , Davoodi A , Mackworth A K . Multi-robot repeated area coverage[J]. Autonomous Robots, 2012, 34(4): 251-276.
[6] 刘凡,李玉玲,杨洪勇.基于多源干扰的Leader-follower多智能体系统的一致性[J].信息与控制,2018, 47(1): 111-118,128.
Liu Fan, Li Yuling, Yang Hongyong. Consistency of leader follower multi-agent system based on multi-source interference [J]. Information and Control, 2018,47(1): 111-118,128.
[7] Wang Q, Wang Y, Zhang H. The formation control of multi-agent systems on a circle [J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):148-154.
[8] Ji L H, Liao X F. Consensus problems of first order dynamic multi-agent systems with multiple time delays [J]. Chinese Phy-sics B, 2013, 22(4):50-55.
[9] Wang M, Xie H F, Jin G M, et al. Event-triggered circle formation control for second-order-agent system [J]. Neurocomputing, 2018, 275:462-469.
[10] 冯元珍. 多智能体:二阶系统组与混合阶情形的一致性问题研究[D]. 南京:南京理工大学, 2013.
Feng Yuanzhen. Multi-agent: Study on the consistency of second-order systems and mixed order cases [D]. Nanjing: Nanjing University of Technology, 2013.
[11] 肖秋云. 多智能体系统有限时间一致性若干问题研究[D]. 江苏:江南大学, 2015.
Xiao Qiuyun. Research on some problems of finite time consistency of multi-agent system [D]. Jiangsu: Jiangnan University, 2015.
[12] 陈罡, 孟静, 高晓丁, 等. 基于Backstepping方法的移动机器人路径跟踪问题研究[J]. 测控技术, 2016, 35(8): 52-56.
Chen Gang , Meng Jing , Gao Xiaoding, et al. Path tracking of mobile robot based on backstepping method [J]. Measurement and Control Technology, 2016, 35(8): 52-56.
[13] 刘国刚. 严格反馈混沌系统的Backstepping控制同步设计[J]. 计算机工程与应用, 2007, 43(23):200-202.
Liu Guogang. Synchronization design of backstepping control for strictly feedback chaotic system [J]. Computer Engineering and Application, 2007, 43(23): 200-202.
[14] Tong S C, Li Y, Li Y M, et al. Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems [J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2011, 41(6):1693-1704.
[15] 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用, 2008, 25(5): 805-810.
Gao Daoxiang, Sun Zengqi, Luo Xiong, et al. Fuzzy adaptive control of hypersonic vehicle based on backstepping [J]. Control Theory and Application, 2008, 25(5): 805-810.
[16] Yao J, Jiao Z, Ma D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6285-6293.
[17] Li X, Dong X, Li Q, et al. Event-triggered time-varying formation control for general linear multi-agent systems [J]. Journal of the Franklin Institute, 2018, 356(17):10179-10195.
[18] Gong Y, Wen G, Peng Z, et al. Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(1):82-86.
[19] Dong X W, Shi Z Y, Lu G, et al. Time-varying output formation control for high-order linear time-invariant swarm systems [J]. Information Sciences, 2015, 298:36-52.
[20] 石晓航, 张庆杰, 吕俊伟. 一类复杂通信条件下高阶线性群系统编队控制[J]. 北京航空航天大学学报, 2020, 326(4):122-133.
Shi Xaohang, Zhang Qingjie, Lü Junwei. Formation control of high-order linear group system under complex communication conditions [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 326(4):122-133.
[21] 朱国栋,林辉,王琛.一类带有广义不确定性非线性系统的自适应模糊反演控制[J].科学技术与工程,2012,12(15):3620-3625.
Zhu Guodong, Lin Hui, Wang Chen. Adaptive fuzzy backstepping control for a class of nonlinear systems with generalized uncertainties [J]. Science, Technology and Engineering, 2012,12(15):3620-3625.
[22] 王钦钊, 程金勇, 李小龙. 基于BackStepping的全向机器人编队控制[J]. 兵器装备工程学报,2017,38(8):104-108.
Wang Qinzhao, Cheng Jinyong, Li Xiaolong. Omnidirectional robot formation control based on backstepping [J]. Journal of Weapon Equipment Engineering, 2017, 38(8): 104-108.
[1] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 66-72.
[2] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[3] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed