Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (4): 50-57    DOI: 10.13306/j.1672-3813.2021.04.006
  本期目录 | 过刊浏览 | 高级检索 |
基于NE结果的多智能体系统模型及其能控性
国俊豪, 纪志坚
青岛大学自动化学院,山东 青岛 266071
A Multi-agent System Model Based on NE Results and Its Controllability
GUO Junhao, JI Zhijian
School of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(1212 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为基于纳什均衡的结果得到多智能体系统的一类新模型,结合实际并运用图论的方法,构造了一类不同于一般模型和Tanner模型的新模型——等邻居模型,该模型首次将纳什均衡与图拓扑结构建立联系。分析了等邻居模型与其他模型在多智能体系统中所得到的能控性的不同点,并发现等邻居模型在特定条件下能够与其他模型产生相同的能控性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
国俊豪
纪志坚
关键词 纳什均衡多智能体系统能控性图论领导者-跟随者结构    
Abstract:It is very meaningful to get a new model of multi-agent system based on Nash equilibrium. Combining the practice and using the graph theory method, this paper constructs a new class of model which is different from the general model and Tanner model: iso-neighbor model. We first introduce the unique characteristics of this kind of model from the point of view of graph theory, then analyze the differences of controllability between iso-neighbor model and other models in multi-agent system, and draw the following conclusions: The iso-neighbor model can produce the same controllability as other models under fixed conditions.
Key wordsnash equilibrium    multi-agent system    controllability    graph theory    leader-follower structure
收稿日期: 2021-03-22      出版日期: 2021-11-30
ZTFLH:  TB3  
基金资助:国家自然科学基金(61873136,62033007);山东省泰山学者攀登计划和山东省泰山学者特聘教授人才支持计划(ts20190930)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统、多机器人系统的分布式协调控制,复杂网络的分析与控制等。   
作者简介: 国俊豪(1996-),女,山东淄博人,硕士研究生,主要研究方向为多智能体网络分布式控制。
引用本文:   
国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
GUO Junhao, JI Zhijian. A Multi-agent System Model Based on NE Results and Its Controllability. Complex Systems and Complexity Science, 2021, 18(4): 50-57.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.04.006      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I4/50
[1]Liu K E, Ji Z J, Xie G M, et al. Event-based broadcasting containment control for multi-agent systems under directed topology[J]. International Journal of Control, 2016, 89(11): 2360-2370.
[2]Guan Y Q, Ji Z J, Zhang L, et al. Controllability of heterogeneous multi-agent systems under directed and weighted topology[J]. International Journal of Control, 2016, 89(5): 1009-1024.
[3]Li Z Q, Ji Z J, Chao Y C, et al. Graph controllability classes of networked multi-agent systems with multi-signal inputs[J].CAAI Transactions on Intelligent Systems, 2016, 11(5): 783-790.
[4]Ji Z J, Lin H, Yu H S. Protocols design and uncontrollable topologies construction for multi-agent networks[J]. IEEE Transactions on Automatic Control, 2015, 60(3): 781-786.
[5]Ji Z J, Lin H, Feng G, et al. Controllability structure decomposition for switched linear systems[J]. Transactions of the Institute of Measurement and Control, 2010, 32(6): 736-755.
[6]Liu B, Ping Y, Wu L, et al. Controllability of discrete-time multi-agent systems based on absolute protocol with time-delays[J].Neurocomputing, 2020, 409(2020): 316-328.
[7]Liu B, Su H, Wu L,et al. Fractional-order controllability of multi-agent systems with time-delay. [DB/OL]. (2020-04-05)[2021-01-10]. https:∥sci-hub.se/10.1016/j.neucom.2020.04.083.
[8]Cesar O, Bahman G. Graph controllability classes for the laplacian leader-follower dynamics[J]. IEEE Transactions on Automatic Control, 2015, 60(6):1611-1623.
[9]Tanner H. On the controllability of nearest neighbor interconnections[J]. Proceedings of the 43rd IEEE Conference on Decision and Control. Atlantis, Raradise Island, Bahamas, 2004: 2467-2472.
[10] Wang L, Jiang F C, Xie G M. Controllability of multi-agent systems based on agreement protocols[J]. Sci China Ser F-Inf Sci, 2009, 52(11): 2074-2088.
[11] Cardoso D M, Delorme M, Rama P. Laplacian eigenvectors and eigenvalues and almost equitable partitions[J]. European Journal of Combinatorics, 2007, 28(3): 665-673.
[12] Qu J J, Ji Z J, Shi Y. The graphical conditions for controllability of multi-agent systems under equitable partition[DB/OL].(2020-05-24)[2021-01-10]. https:∥www.ieee.org/publications/rights/index.html.
[13] Zhang R R, Guo L. Controllability of nash equilibrium in game-based control systems[J]. IEEE Transactions on Automatic Control, 2019, 64(10): 4180-4187.
[14] Ma J Y, Zheng Y S, Zhou L K. Game-based coalescence in multi-agent systems[DB/OL].(2020-05-24)[2021-01-10].https:∥doi.org/10.1016/j.syseonle. 2020.104853.
[15] 郑大钟,线性系统理论[M]. 北京:清华大学出版社, 2002:135-208.
[16] Sun C, Hu G, Xie L. Controllability of multiagent networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2017, 62(10): 5457-5462.
[17] She B, Mehta S, Ton C, et al. Controllability ensured leader group selection on signed multiagent networks[J]. IEEE Transactions on Cybernetics, 2020, 50(1): 222-232.
[18] Ji Z J, Wang Z D, Lin H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. IEEE Trans Autom, 2009, 45(12): 2857-2863.
[1] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[2] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[3] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[4] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed